NANCY - An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term Evolution

Panagiotis Sarigiannidis (<u>psarigiannidis@uowm.gr</u>) Alexandros-Apostolos A. Boulogeorgos (<u>aboulogeorgos@uowm.gr</u>)

GESNS

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement No 101096456. The project is supported by the Smart Networks and Services Joint Undertaking and its members.

NANCY

. . .

Consortium

. . .

Consortium

. . .

. . .

Concept & objectives

Overall objective

				(
	P	illars & obje	ctives		
Pillars	Objectives	Actions	Results	Testbeds	KPIs
B-RAN	Support dynamic scalability, high- security and privacy	 B-RAN and attacks modeling Grant-/cell-free access Consensus mechanisms Distributed and decentralized blockchain Smart pricing 	[R1] [R2] [R3] [R4] [R5] [R6]	Greek in- lab testbed	devices
AI-based wireless RAN orchestration	Ultra reliable connectivity and high energy efficiency	 ML-based joint node association and resource allocation Model-based and data-driven ML-based optimization ML-based slices instantiation FL-based anomaly detection, self-healing, and self-recovery 	[R7] [R8] [R9] [R10] [R11] [R12]	Italy out-of-lab testbed Spain out-of-lab testbed Greek out-of-lab testbed	ntic ve av np
MEC	Almost-zero latency and high computational capabilities at the edge	 Adjuctable to MEC resources B- RAN functions Trade-off between B-RAN performance and resource usage Resource aware/provisioning mechanisms Offloading policies Social-aware caching 	[R13] [R14] [R15]	Italy ou Spain o Greek o	Extremu 20% rec >20% en Ultra-hi Flexible scalability

Results and overall approach

Results

. . .

 \cap

ID	NANCY Technical Advances and Innevations	NANCY Pillars		
שו	NANCY Technical Advances and Innovations			
R1	B-RAN architecture	\checkmark	\checkmark	\checkmark
R2	Novel trustworthy grant/cell-free cooperative access mechanisms	\checkmark	\checkmark	\checkmark
R3	A novel security and privacy toolbox that contains lightweight consensus mechanisms, and decentralized blockchain components	\checkmark		\checkmark
R4	Realistic blockchain and attacks models and an experimental validated B-RAN theoretical framework	\checkmark		
R5	A novel quantum key distribution mechanism to boost end-user privacy	\checkmark		
R6	Smart-pricing policies	\checkmark	\checkmark	
R7	AI-based B-RAN orchestration with slicer instantiator	\checkmark	\checkmark	\checkmark
R8	A novel AI Virtualiser for underutilized computational and communication resource exploitation	\checkmark	\checkmark	\checkmark
R9	Novel self-evolving AI model repository	\checkmark	\checkmark	\checkmark
R10	Experimentally-driven reinforcement learning optimization of B-RAN		\checkmark	\checkmark
R11	Semantic & goal-oriented communications	\checkmark	\checkmark	\checkmark
R12	An explainable AI framework			
R13	Next-generation SDN-enabled MEC for autonomous anomaly detection, self-healing and self-recovery		\checkmark	\checkmark
R14	A computational offloading mechanism with novel resource-aware/provision scaling mechanisms and novel battery as well as computational-capabilities aware offloading policies	\checkmark	\checkmark	\checkmark
R15	User-centric caching mechanisms		\checkmark	\checkmark

. . .

• • •

...

Overall approach

Thank you for your attention!

Questions?

GGSNS

. . .

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement No 101096456. The project is supported by the Smart Networks and Services Joint Undertaking and its members.

17