

TOWARDS AN AI-NATIVE, USER-CENTRIC AIR INTERFACE FOR 6G NETWORKS

6G SNS-JU Phase 1 Project Presentation Webinar

March 6th, 2023

Carles Navarro Manchón, Aalborg University, Technical Project Manager

CENTRIC project has received funding from the European Horizon Europe Programme for research, technological development and demonstration under grant agreement 101096379.

Key numbers

- 13 consortium partners
- € 6,840,005.94 of budget (EU Contribution of € 4,215,999.00)
- 8 European countries
- 30 months duration from 01/01/2023 until 30/06/2025
- Grant Number Agreement: 101096379

Consortium partners

Members:

- Coordinator: Eurescom (DE).
- Academic: Aalborg University (DK), CNIT (IT), CNR (IT), King's College London (UK), University Oulu (FI).
- Industry: Nokia Networks France (FR), NVIDIA (DE), Sequans Communications (FR), Keysight Technologies (ES), Interdigital Europe (UK), Nokia Solutions and Networks (DE)
- SME: Synthara AG (CH)

Vision & Goal

"The goal of project CENTRIC is to enable sustainable, usercentric 6G networks through an Al-native Air Interface (Al-Al)."

Project Objectives

- 1) To develop AI methods for the discovery of **novel and efficient waveforms**
- 2) To develop AI methods for the discovery of **novel and efficient transceivers**
- To develop AI methods for the discovery of customized lightweight communication protocols
- 4) To introduce novel end-to-end **hardware co-design solutions** for energyefficient Al-native transceivers
- 5) To develop **training and monitoring environments** as enablers for AI-AI deployments
- 6) To validate user-centric AI-AI solutions in a lab setting
- 7) To **demonstrate and disseminate** Al-Al concepts

Work package structure

CENTRIC's Technical Innovations

Technical Innovations		Main involved CENTRIC partners		Technical Innovation Areas	
TI-1	Novel waveforms for sub-THz band and short packet transmission	NVIDIA, INTERDIGITAL	τιλ 1	E2E loarned wayoforms and modulations	
TI-2	Methods for user-tailored modulation learning	INTERDIGITAL	11/4-1		
TI-3	Deep learning methods for multi-user MIMO receivers	SEQ, NVIDIA	TIA-2	Al-empowered MIMO communications	
TI-4	Learning frameworks for CSI acquisition, and MIMO precoder selection	NSN, SEQ, INTERDIGITAL			
TI-5	Al methods for user-centric, sensing-aided beam operations in mmWave networks	AAU, INTERDIGITAL, NSN			
TI-6	AI methods for emerging multiple-access protocols for specialized services.	UOULU, NNF, AAU, INTERDIGITAL	TIA-3	Application- and scenario-specific learned protocols	
TI-7	Methods for transmission-mode selection in dense deployments	AAU, INTERDIGITAL			
TI-8	Caching methods for distributed learning	CNIT, UOULU	TIA-4	Sustainable and human friendly RRM	
TI-9	RRM techniques for cell-free massive MIMO networks targeting EMF exposure reduction	CNR, CNIT			
TI-10	Multi-objective AI methods for RRM performance-energy trade-offs	NNF, KCL			
TI-11	New digital CMOS in-memory computing architecture	SYNTHARA		Novel Al-computing hardware and real-time optimization	
TI-12	New mixed analog-digital memristor-based in-memory computing architecture	KCL	TIA-5		
TI-13	Novel computing platform designs based on neuromorphic computing paradigms	KCL			
TI-14	Methods for GPU acceleration of deep learning algorithms	NVIDIA			
TI-15	Theoretical guidelines for the management of AI-AI models	KCL	TIA-6	Training and monitoring environments for Al models	
TI-16	Algorithms and procedures for the management of AI-AI models	KCL, NVIDIA, AAU			
TI-17	Novel methodologies for benchmarking and testing AI in 6G	KEYSIGHT	TIA-7	Al-suitable testing frameworks and Proof of Concept	
TI-18	PoC of Al-Al concepts	KEYSIGHT			

TIA-1: E2E-learned waveforms and modulations

Technical Innovations	Main involved CENTRIC partners
TI-1 Novel waveforms for sub-THz band and short packet transmission	NVIDIA, INTERDIGITAL
TI-2 Methods for user-tailored modulation learning	INTERDIGITAL

End-to-end PHY learning: PHY transceiver chain (transmitter, channel, and receiver) are interpreted as a single neural network, and **trained as an autoencoder**

Targeted Use Cases:

- THz Communications
- Short packet transmissions
 - Novel modulations

TIA-2: Al-empowered MIMO communications

	Technical Innovations	Main involved CENTRIC partners
TI-3	Deep learning methods for multi-user MIMO receivers	SEQ, NVIDIA
TI-4	Learning frameworks for CSI acquisition, and MIMO precoder selection	NSN, SEQ, INTERDIGITAL
TI-5	Al methods for user-centric, sensing-aided beam operations in mmWave networks	AAU, INTERDIGITAL, NSN

CENTRIC

TIA-3: Application- and scenario-specific learned protocols

TIA-4: Sustainable and human friendly RRM

	Technical Innovations	Main involved CENTRIC partners
TI-8	Caching methods for distributed learning	CNIT, UOULU
TI-9	RRM techniques for cell-free massive MIMO networks targeting EMF exposure reduction	CNR, CNIT
TI-10	Multi-objective AI methods for RRM performance-energy trade-offs	NNF, KCL

TIA-5: Novel AI-computing hardware and real-time optimization

Technical Innovations		Main involved CENTRIC partners
TI-11	New digital CMOS in-memory computing architecture	SYNTHARA
TI-12	New mixed analog-digital memristor-based in-memory computing architecture	KCL
TI-13	Novel computing platform designs based on neuromorphic computing paradigms	KCL
TI-14	Methods for GPU acceleration of deep learning algorithms	NVIDIA

CENTRIC

Latency and throughput requirements in communications are 1—3 orders of magnitude more stringent than in typical Al applications

TIA-6: Training and monitoring environments for AI models

	Technical Innovations	Main involved CENTRIC partners
TI-15	Theoretical guidelines for the management of AI-AI models	KCL
TI-16	Algorithms and procedures for the management of AI-AI models	KCL, NVIDIA, AAU

DIGITAL TWIN PLATFORM:

- user-provided models of traffic and of service demands
- repository of AI modules implementing different functionalities
- models of the propagation and interference environments
- **interfaces** with physical entities being modelled by virtual twin counterparts

AI MODEL MANAGEMENT:

- Use of information theory and statistical learning theory to address fundamental questions: 1) How much data is required? 2) What is the effect of modularity?
- Use theoretical guidelines to develop practical solutions to the AI management problem

TIA-7: Al-suitable testing frameworks and Proof of Concept

CENTRIC

Dissemination and Exploitation Strategy

Indicators Academic partners Measure / Targets products Increase of scientific production Conference publications At least 20 Training of young researchers Attraction of talent Publications in journals At least 12 Expansion of educational curriculum ٠ Spinoffs/startups (potential) Vision / white papers on main 2-3 Industries project aspects and goals semiconductors **UE** vendors test & measurements Industrial partners network vendors network operators Contributions to standards At least 10 Intellectual property production At least 10 Contributions to open-source Exploration of new markets enabled by **CENTRIC** discoveries community Insertion of CENTRIC discoveries into 6G Project workshops At least two standards Productization of some CENTRIC ideas (potential) Online project webinars At least 3 Participation in industry 3 events

Exploitation Strategy

2

2-3

Project booths at events

projects/initiatives in the area

Liaison with other

Dissemination Targets

15

Online Presence

Do not hesitate to follow us on Social Media and subscribe to our Newsletter to avoid missing any news:

CENTRIC

https://centric-sns.eu/

Subscribe now to our newsletter!

Towards an Al-Native, User-Centric Air Interface for 6G Networks

Many thanks for your attention!

CENTRIC

CENTRIC project has received funding from the European Horizon Europe Programme for research, technological development and demonstration under grant agreement 101096379.

6G SNS-JU Phase 1 Project Presentation Webinar