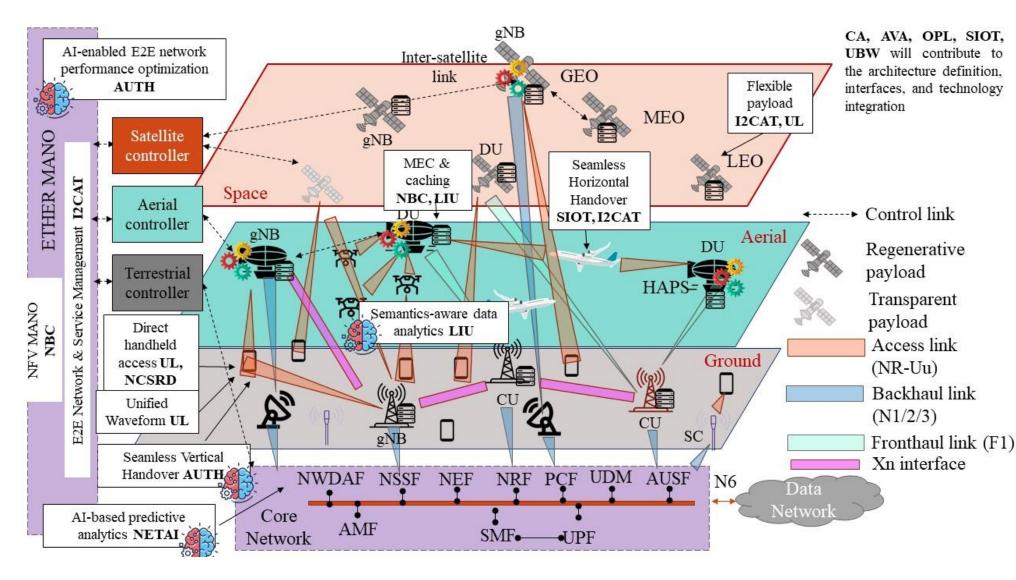
## **ETHOR** ETHER- Self-Evolving Terrestrial/Non-Terrestrial Hybrid Networks

Konstantinos Ntontin, Research Scientist, Project Coordinator SIGCOM, SnT, University of Luxembourg

SNS Lunch Webinars, 06/03/2023

www.ether-project.eu


## Consortium

| Number | Role | Short name  | Legal name                                                          | Country |
|--------|------|-------------|---------------------------------------------------------------------|---------|
| 1      | COO  | uni.lu      | UNIVERSITE DU LUXEMBOURG                                            | LU      |
| 2      | BEN  | AUTH        | ARISTOTELIO PANEPISTIMIO<br>THESSALONIKIS                           | EL      |
| 3      | BEN  | CA          | COLLINS AEROSPACE IRELAND, LIMITED                                  | IE      |
| 4      | BEN  | AVA         | AVANTI HYLAS 2 CYPRUS LIMITED                                       | CY      |
| 5      | BEN  | SIOT        | SATELIO IOT SERVICES, SL                                            | ES      |
| 6      | BEN  | Ubiwhere    | UBIWHERE LDA                                                        | PT      |
| 7      | BEN  | I2CAT       | FUNDACIO PRIVADA I2CAT, INTERNET I<br>INNOVACIO DIGITAL A CATALUNYA | ES      |
| 8      | BEN  | NBC         | NEARBY COMPUTING SL                                                 | ES      |
| 9      | BEN  | NCSR "D"    | NATIONAL CENTER FOR SCIENTIFIC<br>RESEARCH "DEMOKRITOS"             | EL      |
| 10     | BEN  | LIU         | LINKOPINGS UNIVERSITET                                              | SE      |
| 11     | BEN  | OPL         | ORANGE POLSKA SPOLKA AKCYJNA                                        | PL      |
| 12     | AP   | MARTEL GMBH | MARTEL GMBH                                                         | CH      |
| 13     | AP   | Net AI      | NET AI TECH LTD                                                     | UK      |

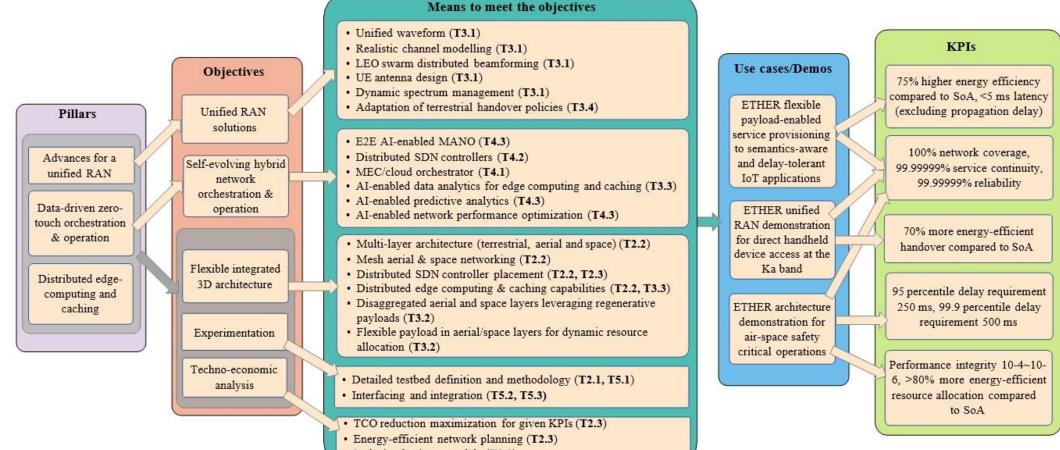


5 Academic partners
8 industry partners (5 SMEs)

## Vision






"By adopting a hybrid network, NTNs can offer significant capex and opex reductions compared to deploying only terrestrial base stations to achieve the same amount of coverage. According to the same case study, providing full 5G coverage the UK would across require tens of thousands of additional terrestrial sites. while the same could coverage be achieved with a fleet of around 60 HAPs<sup>1</sup>"

<sup>1</sup>5G's future is hybrid – the nonterrestrial opportunity," Mobile World Live, Tech. Rep.

#### ether-project.eu | © Copyright ETHER 2023-2025

## **ETHER in a Nutshell**

**ETHER** is going to provide a framework for the terrestrial/non-terrestrial network ecosystem that involves an efficient and zero-touch resource management, provides solution for key radio access network (RAN) challenges, and identifies the business opportunities for potential stakeholders



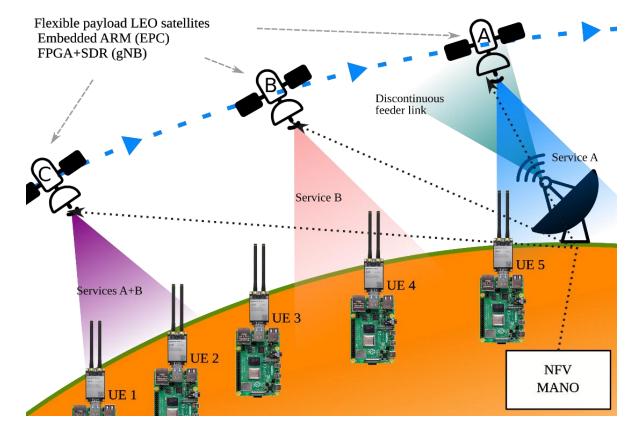
Inclusive business models (T2.3)



## **Objectives**



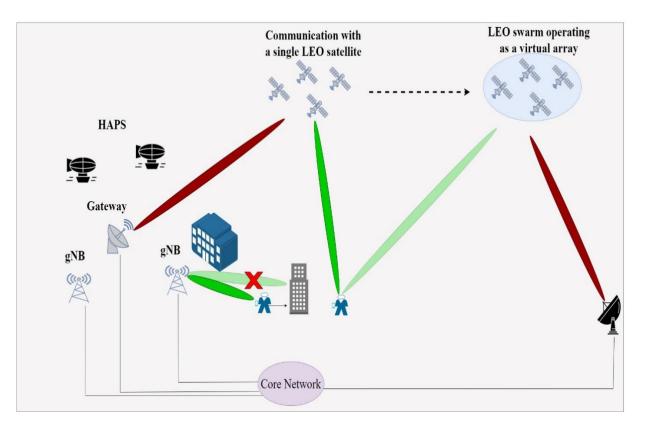
| Pillar I               | 0-1 | Provide solutions for a <b>unified and sustainable RAN</b><br>for the integrated terrestrial and non-terrestrial<br>network                                                                                                                                                                     |  |  |
|------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pillar II              | 0-2 | Provide an <b>AI-based framework</b> for the self-evolving<br>network slicing management and orchestration of the<br>integrated network, automatically adjusting its<br>management policies and allocated resources based<br>on stimuli corresponding to unknown environments<br>and situations |  |  |
|                        | 0-3 | <b>Architect a viable, highly energy- and cost-efficient</b> ,<br>flexible integrated terrestrial and nonterrestrial<br>6G network offering seamless and continuous<br>connectivity                                                                                                             |  |  |
| Pillars I, II, and III | 0-4 | Demonstrate the effectiveness of ETHER solutions by<br><b>experimentation activities</b> that target<br>practical applications                                                                                                                                                                  |  |  |
|                        | 0-5 | Identify the key <b>benefits</b> that will drive the <b>investment</b> in the integration of non-terrestrial with terrestrial networks                                                                                                                                                          |  |  |


## **Technical Innovations to be Brought**



| ID         | ETHER Technical<br>Innovations                    | ETHER Pillars |              |              |  |  |
|------------|---------------------------------------------------|---------------|--------------|--------------|--|--|
|            |                                                   | Pillar I      | Pillar II    | Pillar III   |  |  |
|            |                                                   |               |              |              |  |  |
| <b>T-1</b> | Integrated architecture                           |               | $\checkmark$ | $\checkmark$ |  |  |
|            | Direct handheld device                            |               |              |              |  |  |
|            | access at the Ka band from                        |               |              |              |  |  |
| <b>T-2</b> | LEO satellites                                    |               |              |              |  |  |
| T-3        | Unified waveform design                           |               |              |              |  |  |
| Т-4        | Flexible payloads                                 | $\checkmark$  | $\checkmark$ | $\checkmark$ |  |  |
| Т-5        | Data analytics, edge computing, and caching       |               | $\checkmark$ | $\checkmark$ |  |  |
| Т-б        | Horizontal/Vertical<br>Handovers                  |               |              |              |  |  |
| Т-7        | Automated MANO for the<br>integrated network      |               | $\checkmark$ | $\checkmark$ |  |  |
| <b>T-8</b> | AI-driven E2E network<br>performance optimization |               |              |              |  |  |

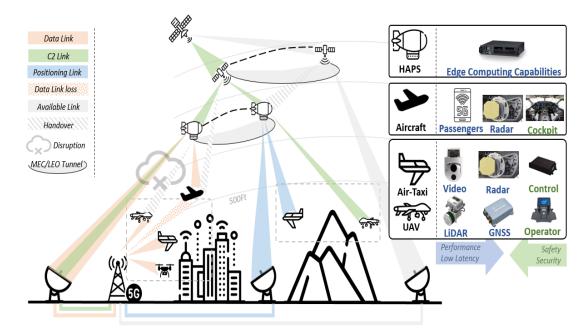
## **Demonstrator 1**






| Demo 1: Horizontal handovers for delay-tolerant IoT services |                                                                                                                                                       |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Involved Actors                                              | Involved Actors I2CAT, SIOT, LIU, AVA, OPL, UBW                                                                                                       |  |  |  |  |
| KPIs                                                         | <b>KPIs</b> 100% coverage, and >75% higher energy efficiency leveraging semantics-aware information handling combined with edge computing and caching |  |  |  |  |

### **Demonstrator 2**






| Demo 2: ETHER Unified RAN for direct handheld device access at the Ka band |                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Involved Actors                                                            | UL, NCSRD, AUTH, AVA, SIOT, OPL                                                                                                |  |  |  |
| KPIs                                                                       | 100% coverage, 99.99999% service continuity, 99.99999% reliability, 70% more energy-<br>efficient handover compared to SoA [6] |  |  |  |

### **Demonstrator 3**





| Demo 3: ETHER Architecture demonstration for air-space safety critical operations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Involved Actors CA, NBC, AUTH, AVA, SIOT, OPL, NETAI, UBW, I2CAT, UL              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| KPIs                                                                              | Performance requirements for safety-critical operation shall be comparable with EASA or EUROCONTROL requirements or Control and Non-Payload Communications (CNPC) data link from RTCA SC 208 / EUROCAE WG 73/93. Given the use of single LEO satellite in end-to-end connectivity, the targeted performance is as follows: 95 percentile delay requirement 250 ms, 99.9 percentile delay requirement 500 ms, 99.99999% service continuity [7], 99.99999% reliability [9], performance integrity $10^{-4} \sim$ |  |  |  |  |

## Work Package List

| 1 |            |  |
|---|------------|--|
|   | $\bigcirc$ |  |
|   |            |  |
|   | -          |  |

| WP<br>No | Work Package Title                                                                             | Lead<br>Part. No | Lead Part.<br>Short Name | Person-<br>Months | Start<br>Month | End<br>month |
|----------|------------------------------------------------------------------------------------------------|------------------|--------------------------|-------------------|----------------|--------------|
| 1        | Project Management and Ethics                                                                  | 1                | UL                       | 47                | M01            | M36          |
| 2        | ETHER 3D Architecture, Use Case<br>Requirements, and Business Study                            | 11               | OPL                      | 109.5             | M01            | M18          |
| 3        | Key Technological Enablers for the<br>seamless and energy-efficient ETHER<br>Network Operation | 9                | NCSRD                    | 114.5             | M04            | M30          |
| 4        | Zero-touch data-driven network and<br>service orchestration in the 3D<br>ETHER architecture    | 7                | I2CAT                    | 113               | M04            | M30          |
| 5        | Technology Integration and Live<br>Demonstration of ETHER<br>technologies                      | 6                | UBW                      | 160               | M12            | M36          |
| 6        | Communication, Dissemination,<br>Exploitation and Standardization                              | 12               | MAR                      | 75.5              | M01            | M36          |
|          |                                                                                                |                  | Total months             | 619.5             |                |              |

## **Technologies That May Lead to Standardization**



| ETHER MANO                | Individual components of<br>the ETSI OSM will be<br>updated to account for both<br>the aerial and space layers | Storada Racourca                    | Expansion of these<br>algorithms to<br>also account for both<br>aerial and space layers                | Al-Based ETHER<br>Monitoring<br>Framework for<br>Integrated Multi-<br>RAT Traffic | NetAI's Microscope traffic<br>monitor will be extended<br>to account for<br>heterogeneous terrestrial,<br>aerial, and space traffic<br>apart from terrestrial | ETHER Core | The proof-of-concept core<br>network with store-and-forward<br>capability for discontinuous link<br>operation will be expanded to<br>account for the satellite<br>dynamics, relative mobility and<br>UEs location management |
|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETHER MEC<br>Orchestrator | will be extended to allow                                                                                      | ETHER Flexible<br>Payload<br>System | Integrating the flexible<br>payload system in an<br>SDR board, also<br>incorporating the ETHER<br>MANO | ETHER UE<br>Antenna for Direct<br>Handheld Device<br>Access at the Ka<br>Band     | Design of a handheld<br>device antenna for<br>broadband communication<br>across the 3 layers                                                                  |            |                                                                                                                                                                                                                              |

# ROR ETHOR

## Thanks

kostantinos.ntontin@uni.lu



ether-project.eu

@ETHER\_eu

@etherprojecteu



ETHER project is funded by the EU's Horizon Europe programme under Grant Agreement number 101096526



im