SNS-OPS Survey Results on Technical, Vision and Market aspects of Phase 1 SNS Projects

Kostas Trichias (6G-IA), Per Hjalmar Lehne (TEL), Didier Bourse (NOKIA), Arda Gureller (ERI), Jessica Carneiro (AUS), James Clarke (WIT), Colin Willcock (6G-IA), Uwe Herzog (Eurescom)

23rd November 2023

THIS WEBINAR WILL BE RECORDED!
Welcome to the SNS OPS Webinar on the Technical, Vision & Market aspects of Phase 1 SNS Projects

The SNS JU journey has kicked-off with 35 projects in Q1 2023 (33 R&I projects + 2 CSA)

All projects addressing the challenges & topics mentioned in the SNS Work Programme 2022

Important to get a more comprehensive view of their work & goals, after they have had a chance to consolidate their approach.
A questionnaire was created by SNS OPS project and addressed to all 33 SNS R&I call 1 projects, as part of the SNS Monitoring & Analysis Framework (SNS OPS Deliverable D1.1).

The goal of the questionnaire is to get a better understanding of the work planned to be performed in each of the projects, the challenges being addressed and the expected outcomes.

The questionnaire consists of three sections, i) Technical section (15 questions), ii) Vision section (6 questions) and iii) Markets section (8 questions).

All 33 projects provided their answers in the period April-May 2023.

The key insights extracted from the project answers are provided here.

The questionnaire will be re-issued on an annual basis addressing all active SNS JU projects.

- 1 Version for new (incoming) projects (targeting insights on work plans, vision and market aspects)
- 1 Version for old (existing) projects (targeting insights on results of ongoing work)

Q&A: please ask your questions in the chat-box, identifying the question and speaker addressed
<table>
<thead>
<tr>
<th>Time (CET)</th>
<th>Presenter</th>
<th>Subject</th>
<th>Presenter Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.00 - 14.05</td>
<td>Colin Willcock</td>
<td>Welcome</td>
<td>SNS JU GB chairman</td>
</tr>
<tr>
<td>14.05 - 14.10</td>
<td>Uwe Herzog</td>
<td>SNS OPS Questionnaire Introduction</td>
<td>Eurescom, SNS OPS Project Coordinator</td>
</tr>
<tr>
<td>14.40 - 14.55</td>
<td>Per Hjalmar Lehne</td>
<td>SNS Phase 1 Projects – Vision</td>
<td>Telenor, SNS OPS WP1 Vision Task Leader</td>
</tr>
<tr>
<td>14.55 - 15.15</td>
<td>Jessica Carneiro</td>
<td>SNS Phase 1 Projects – Market Insights</td>
<td>Australo, SNS OPS WP4 Leader</td>
</tr>
<tr>
<td>15.15 - 15.30</td>
<td>Uwe Herzog (moderation)</td>
<td>Way forward & Q&A</td>
<td></td>
</tr>
<tr>
<td>15.30</td>
<td></td>
<td>End of Event</td>
<td></td>
</tr>
</tbody>
</table>
Technical Section

Key Performance Indicators (KPIS)

B5G/6G Technological Enablers

Network Aspects Addressed

Verticals

Use Cases & Applications

Use of AI/ML

Standardisation Targets

Validation Methodologies

End User Equipment

Trials & Pilots (Planning)

Energy Efficiency
Technical, T1: What is the main planned technology outcome or the key technological improvements targeted by your project?

- Projects’ input was matched to the Specific Objectives (SO) of each stream (as defined in the SNS JU R&I WP 2022)
- The SNS projects’ technology contributions towards the SOs was categorized into Primary & Secondary
- Results indicate:
 - Good coverage of all SOs of SNS JU WP 2022
 - Good distribution between Primary & Secondary objectives (all SOs in Streams A & B have at least 1 project treating them as primary)
 - Stream C & D projects well aligned in their mission (similar approach)

Detailed results (SO matching per project) will become available with deliverable D1.2 of SNS OPS (Jan 2024)
Technical, T2:
Which of the following main KPIs will your project address?

Key Insights
- Good coverage of all main KPIs
- URLLC type KPIs & Energy Efficiency are the most popular
Key Insights

- Most KPIs are well covered by all streams.
- Stream D projects seem to cover almost all basic KPIs (offering them to experimenters).
- Latency, reliability and Energy Efficiency are the most covered KPIs.
Technical, T3: Will your project address additional KPIs? If yes, which ones?

Key Insights

- **31 additional KPIs** are investigated by projects.
- **19 additional KPIs** are investigated by single projects (not shown).
- Wide-spread coverage of network aspects and novel technologies evaluation by Phase 1 projects.

Security Related KPIs: cyberattack detection rate, Resistance to adversarial attacks, etc.

Sustainability related KPIs: resource utilization rate/efficiency, signalling overhead, Scalability

NTN terminal related KPIs: antenna aperture, power consumption, frequency agility, etc.

NTN constellations KPIs: number of flying nodes, feeder links capacities, link budgets, etc.

AI/ML related KPIs: accuracy, AI training performance, inference latency, AI safety, etc.

Determinism: packet delay variation, predictability

Question

Technical, T3: Will your project address additional KPIs? If yes, which ones?
Key Insights

- Distribution matches nicely the SNS-JU stream focus
- Low coverage on micro-electronics addressed with Stream B-01-05 project in WP2023 & Microelectronics Lighthouse project in WP 2024
- Additionally, the use of Digital Twinning technology was mentioned by multiple projects
Key Insights

• Addressed technologies follow the respective stream guidelines

• All 3 Stream C projects address Network Architecture, Edge computing, RAN & signalling aspects & security issues.
Technical, T5:
Which technological enablers will your project work on / make use of?

Key Insights:
- Use of AI/ML is almost universal for Phase 1 projects (29/33)
- The “Other” category mostly covers very project specific technologies/enablers
Technical, T5:
Which technological enablers will your project work on/make use of?
Per stream

Key Insights
- AI seems to be a global enabler
- Optical wireless and Quantum computing are less well covered
Technical, T6: Which of the following use cases / applications will your project support?

Key Insights

- Digital Twin applications are very popular
- Additional UCs mentioned:
 - Predictive maintenance (airline fleet), End to end energy measurement and conservation system, etc.
- Additional UCs expected from open calls (Streams C & D)
Technical, T6: Which of the following use cases / applications will your project support (per stream)?

Key Insights

- Good coverage for multiple UCs / Applications across all streams
- Digital Twin Applications seem to be the most popular
Question: Will your project make use of AI/ML? If yes, on which part of the system will your project use AI or which AI services will you develop?

Key Insights:
Some specific examples of the use of AI have been mentioned by some projects:

- Near-real time resource allocation,
- Interference management
- Predictive scheduling
- Jamming detection and mitigation
- Network performance prediction (e.g., predicted latency)
- Intent-based
- Beam forming/tracking management
Technical, T8: Which standardisation bodies will your projects target for contributions?

Key Insights

- **3GPP & ETSI** are by far the most popular SDOs
- When looking at specific WG contributions, slightly more contributions towards ETSI are envisioned than 3GPP (more ETSI groups are targeted)
- A more detailed analysis per group was necessary for additional insights

<table>
<thead>
<tr>
<th>Standards Body</th>
<th>No of SNS-JU Phase 1 projects targeting each standards body</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>28</td>
</tr>
<tr>
<td>ETSI</td>
<td>27</td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
</tr>
<tr>
<td>Open Source contributions</td>
<td>11</td>
</tr>
<tr>
<td>IETF/IRTF</td>
<td>10</td>
</tr>
<tr>
<td>ITU</td>
<td>10</td>
</tr>
<tr>
<td>No standardisation</td>
<td>0</td>
</tr>
</tbody>
</table>

No of SNS-JU Phase 1 projects targeting each standards body
Question
Technical, T8: Which standardisation bodies will your projects target for contributions?

T8 - SDO Targetted Bodies (Part A)
- ETSI INT: 1
- ETSI SAI: 2
- ETSI NFV SEC: 1
- ETSI THz: 1
- ETSI TFS (TeraFlow): 2
- ETSI MEC: 4
- ETSI TC EE: 2
- ETSI ZSM: 5
- ETSI OSM: 6
- 3GPP SA5: 3
- 3GPP SA3: 4
- 3GPP SA1: 1
- 3GPP RAN4: 2
- 3GPP RAN2: 3
- 3GPP RAN: 4

T8 - SDO Targetted Bodies (Part B)
- ECSO: 1
- GSMA: 1
- 5G-ACIA: 1
- NGMN 6G Use Cases: 1
- O-RAN WG9: 1
- O-RAN WG4: 1
- O-RAN WG2: 4
- Small Cell Forum (SCF): 6
- IEEE 802.11: 2
- IETF COINRG: 1
- IETF RATS: 1
- IETF: 1
- ITU-R WP4B: 3
- ITU-T SG13: 5
- ITU-T SG5: 1
- ITU-T SG1: 2
Technical, T9: Which methods will your project use to validate the technologies to be developed?

Key Insights

- **Simulations & Lab tests** are very popular due to early experimentation stage.
- Significant **re-use & upgrade of existing experimentation facilities** is important.
- More advanced Trials and Pilots are expected in the follow up phases of SNS-JU.

No of SNS-JU Phase 1 projects using each validation method:

- Lab tests: 28
- Simulations: 26
- Advanced testbed: 23
- Reuse of existing platforms (e.g., H2020-ICT17): 14
- Other: 6
- Trials/Pilots validation (Large Scale Trials): 5
Key Insights

- **Stream A & B projects** support relatively “simpler” validation methods.
- **Stream C & D projects** support almost all validation methods and offer more advanced capabilities.

Technical, T9:
Which methods will your project use to validate the technologies to be developed? *Per stream*
Question

Technical, T11: What type of (End User) Equipment will be used for testing/trialling in your project?

Key Insights

- Mobile phones (UEs), IoT sensors and **CPEs** are the most popular devices.
- Multiple devices offered by SNS projects to experimenters.
- Most prominent answers under “other” were:
 - Smart glasses, XR user equipment, Robots/Cobots, Software Defined Radio, smart gateways.
Technical, T11: What type of (End User) Equipment will be used for testing/trialling in your project (Per Stream)?

Key Insights

- **Stream C & D** projects offer a large variety of testing / trialling equipment.

- **On-Board Units (OBU)** have the lowest coverage as they target a specific technological area (transport) – covered in Call 2 Stream D.
Technical, T12:
Please provide information regarding your panned Trials & Pilots including the focus of each trial?

Number of Projects providing first level of information

Key Insights

- Some clear pre-identification of targeted dates
- Some clear identification of targeted UCs/Verticals
- Very few information on Locations
- As planned, the Stream C and Stream D Open Calls will result in additional trials

Clear need to further synchronize on the “TRL” (level) before any further detailed action/implementation, as Answers include Validation, Lab Demonstrators, Demonstrations, Support to Experimenters (e.g. Open Calls), Trials, Testbeds and Pilots (Taken into account for the next edition of the Questionnaire)
Technical, T13: How do you engage verticals in your project?

<table>
<thead>
<tr>
<th>Engagement Method</th>
<th>No of SNS-JU Phase 1 projects using each engagement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements provisioning</td>
<td>22</td>
</tr>
<tr>
<td>Use of vertical devices/equipment for testing/trialing</td>
<td>13</td>
</tr>
<tr>
<td>End-user testing</td>
<td>13</td>
</tr>
<tr>
<td>Integration of vertical system with project developed platform</td>
<td>11</td>
</tr>
<tr>
<td>Common technology development with vertical</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
</tr>
</tbody>
</table>

Key Insights

- Important role of verticals during the **requirements provisioning** phase
- Significant participation of verticals in the **testing & validation** phases as well
- Most prominent answer under “other”:
 - Vertical participation in Advisory Board
Key Insights

• SME participation is critical for almost all SNS projects as they include SMEs in their consortia

• Stream C & D open calls are expected to significantly increase the number of SMEs participating in the SNS JU ecosystem.

Question
Technical, T14:
Does your project promote the participation of SMEs? How?
Key Insights

- **Most projects address Energy efficiency** via the design of specific algorithms
- **Similar interest in the implementation** on the RAN, core, device side or natively (about 1/3 of projects)

Question

Technical, T15:

Does your project address energy efficiency, if so, how?

- **Design of specific algorithms**: 19 projects
- **On the device side**: 13 projects
- **On the RAN plane**: 13 projects
- **On the core/management plane**: 12 projects
- **Native/implementation by design (architecture level)**: 11 projects
- **Application service level**: 6 projects
- **Connectivity service level**: 5 projects
- **Other**: 3 projects
- **Not addressed in the project**: 1 project

No of SNS-JU Phase 1 projects using each energy efficiency approach
Key Insights

- Energy efficiency is addressed in 32 out of 33 projects (very important)
- Especially Stream A projects seem to be very active in energy efficiency research
- Different approaches by different projects

Technical, T15:
Does your project address energy efficiency, if so, how? *Per stream*
VISION SECTION
Vision Section

- Societal Challenges
- Social Values
- Key Value Indicators (KVI)
- 6G Vision
- Sustainability
- Collaboration
Contributions to societal challenges

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced 6G ICT solutions for vertical industries</td>
<td>25</td>
</tr>
<tr>
<td>Accelerate the development and deployment of Advanced 6G ICT solutions</td>
<td>23</td>
</tr>
<tr>
<td>Support research and energy efficiency</td>
<td>21</td>
</tr>
<tr>
<td>Promote SME involvement</td>
<td>21</td>
</tr>
<tr>
<td>Technological sovereignty across the SNS value chain</td>
<td>17</td>
</tr>
<tr>
<td>Alignment of SNS with EU policy and societal needs</td>
<td>13</td>
</tr>
<tr>
<td>Cross-sector collaboration</td>
<td>11</td>
</tr>
<tr>
<td>Support the identification of regulations on energy efficiency</td>
<td>6</td>
</tr>
<tr>
<td>Engagement with regulators and policy makers</td>
<td>6</td>
</tr>
<tr>
<td>Support high risk research</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
</tr>
</tbody>
</table>

Key Insights

- Projects are most focused on technology challenges
- Close followers are on research, energy efficiency, and SME involvement
- Less focus on regulations and high-risk research

Stream C and D projects have the highest focus on societal challenges
Vision, V2: Which societal values are addressed in your project?

Key Insights

- Sustainability and energy consciousness are claimed by many projects.
- Next comes natively integrated AI and trusted technology.
- Less focus on end-user engagement and inclusiveness.

Stream D projects have the highest focus on societal values.
Stream A projects have no end user focus.

Societal values addressed:

- Sustainable / Energy conscious operation
- Natively integrated artificial Intelligence
- Trusted technology
- Human-centric approach
- Inclusiveness
- End-user engagement
- Other
Matching the responses with the Key Values (KVs) proposed in the 6G-IA White Paper:
“What societal values will 6G address?”* (direct and indirect)

Vision, V3:
Does your project address Key Value Indicators (KVIs)? If yes, which ones? Which use case/vertical do they address?

Key Insights
- The notion of KVIs is still difficult to grasp for many projects
- Economical values are dominating above the others
- Low match on: Cultural connection and Personal freedom (none), Knowledge, and Simplified life
Vision, V4: How do you contribute to the 6G Vision in your project?

Key Insights
- Projects are conscious about leadership and standards
- Medium focus on AI, sovereignty and security, and competence
- Little focus on ethic principles

6G Vision
- Promoting European leadership: 30
- Contributing to global standards: 29
- The ‘AI everywhere’ principle: 15
- Sovereignty and security: 12
- Creating a world class competence pool: 10
- Ethics principles: 2
- Other: 0

Similar focus for all Streams (A, B, C, D)
Vision, V5:
As sustainability is essential for B5G/6G networks, which UN Sustainable Development Goals (SDGs) will your project contribute to?

Key Insights
The SNS work programme is specifically asking for contributions to 4 SDGs and projects have these on top:

- SDG 9: Industry, Innovation and Infrastructure
- SDG 11: Sustainable Cities and Infrastructure
- SDG 8: Decent Work and Economic Growth
- SDG 13: Climate Action

Other SDGs which gain some attention are:
SDG 4: Quality Education – SDG 3: Good Health and Well-being – SDG 5: Gender Equality – SDG 10: Reduced Inequality
Key Insights

Top three attractive WGs, matched to the list found on https://5g-ppp.eu/5g-ppp-work-groups/

1. 5G/Beyond 5G Architecture WG
2. Pre-Standardization WG
3. Security WG, Vision WG, SME WG

The new WG structure is still in the shaping
A large number of thematic preferences have been put forward by the project (analysis still in progress)

The projects were notified that the response is not binding and will only be treated as an indication.
Overview

Market Section

Key technologies and innovations for 6G
Main market trends in the advent of 6G
Vertical sectors expected to be impacted by 6G
Validation of business opportunities

Main obstacles to the development of 6G
Novel markets for 6G development
Key exploitable results (KER)
Market, M1

Which are the biggest market changes you expect in your domain/market area with the advent of 6G? (I)

Key Insights

- The demand for private networks/PNI-NPN will increase, thus generating new business opportunities for MNOs.
- AI-based solution and application providers will gain significant benefits.
- VR/AR equipment, drones and UAVs, robots and sensors are expected to carve out benefits for vendors and original equipment manufacturers.

Trends

- Market fragmentation due to a more modular architecture
- A few globally dominant enterprises, perhaps emerging from current incumbents.

Disrupters

- IoT+ DTs
- Holographic
- Internet of Senses
- HPC and Quantum computing
- TSNs

Vertical markets

- PPDR
- Media and Entertainment
- Agriculture, Forestry
- Health
- Industry 4.0, manufacturing
- Transport, logistics, autonomous driving

Questions

- Increased integration (= seamless connectivity), proliferation of wireless solutions for critical applications and openness of solutions (easier adoption of 5G/6G).
- Automation and lowered technological barriers (automated network management, virtualised and disaggregated network infrastructures, reconfigurable networks).
- New communication technologies, AI and advanced hardware are expected to accelerate the entry into markets that leverage massively scalable immersive environments (i.e., xR/VR, PPDR, automotive, etc.).
- Stricter and sophisticated security controls and privacy are necessary to guarantee trust in the new services enabled by 6G.
- Energy efficiency: high wireless flexibility would allow for dynamic, environmentally friendly connectivity options.
Market, M2

Which of the following technologies/innovations do you expect to play an important role in the telecommunications market in the coming years?

<table>
<thead>
<tr>
<th>Technology</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al based solutions</td>
<td>28</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>22</td>
</tr>
<tr>
<td>Dynamic / zero-touch Network Management</td>
<td>21</td>
</tr>
<tr>
<td>Open & disaggregated solutions</td>
<td>19</td>
</tr>
<tr>
<td>Localization & sensing</td>
<td>18</td>
</tr>
<tr>
<td>Cloudification</td>
<td>12</td>
</tr>
<tr>
<td>TN-NTN-PN integration/interoperability</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

Key Insights

- **Al-based solutions** are expected to cause the greatest impact in the telecoms market across all projects and streams, followed by **Energy Efficiency solutions** and **Dynamic/Zero-touch Network Management** ones.
- **TN-NTN-PN integration/interoperability** are seen as having a lower impact.
Key Insights

- Open and disaggregated solutions are rather important according to Stream A, C and D.
- Location and sensing solutions are mentioned by all projects in Stream C and 75% of projects in Stream D, as well as more than 50% projects in Stream B.
- Cloudification is mentioned by 75% of projects in Stream D and C and none in Stream A.
Question

Market, M3

Which vertical sectors do you expect to be affected the most with the advent of 6G?

<table>
<thead>
<tr>
<th>Vertical Sector</th>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry 4.0 / Manufacturing</td>
<td>23</td>
</tr>
<tr>
<td>Media / xR</td>
<td>21</td>
</tr>
<tr>
<td>Automotive / Transport / Logistics</td>
<td>16</td>
</tr>
<tr>
<td>Smart City</td>
<td>13</td>
</tr>
<tr>
<td>Smart Health</td>
<td>11</td>
</tr>
<tr>
<td>Security / PPDR</td>
<td>7</td>
</tr>
<tr>
<td>Smart environment (climate, ocean, soil)</td>
<td>4</td>
</tr>
<tr>
<td>Smart Agriculture / Farming</td>
<td>4</td>
</tr>
<tr>
<td>Tourism & Culture</td>
<td>4</td>
</tr>
<tr>
<td>Smart Energy</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
</tbody>
</table>

Key Insights

- **Industry 4.0/Manufacturing** and Media/xR are expected to be the verticals most impacted by the advent of 6G.
- Stream A and B show a higher interest in Industry 4.0/Manufacturing, whereas Stream C and D do it in media/xR.
- The opinions are rather divided regarding the other vertical sectors.

Projects could only select three options.
Market, M3
Which vertical sectors do you expect to be affected the most with the advent of 6G? Per stream

Key Insights

Top verticals per stream (+50%):
- Stream A: industry, media, smart city, automotive
- Stream B: industry, media
- Stream C: media, industry
- Stream D: smart city, automotive, security, media

Verticals expected to be the least impacted by the advent of 6G:
- Smart Energy (no Stream D projects),
- Smart Environment (only selected by Stream B projects),
- Tourism and Culture (no Stream A projects) and
- Smart Agriculture (no Streams C and D projects).
Market, M4

How do you validate business opportunities in vertical sectors?

Key Insights

- Working closely with the use case owners is the preferred path for projects (70%) to validate business opportunities in vertical sectors overall and across streams.
- All Stream C and D projects chose this option.
- The formulation of hypotheses about verticals technological needs is very common among Stream B.
- ¾ projects in Stream D projects choose the application of methods suggested by 6G-IA (the least popular response overall).

No project in Stream C selected the hypothesis about potential business models for a technology nor the methods suggested by 6G-IA.
Market, M5

What do you consider to be the greatest obstacle for the deployment of 6G networks?

Key Insights

- **Deployment costs** are seen as the main obstacle by far. Projects indicate little transparency regarding the RoI.
- The **lack of demand for unique 6G services** and the **lack of willingness to allow interoperability** are also seen as notable challenges.
- The **impact of AI** is also an important concern.

Additional observations:

- **Security and Privacy**: reference to the large amount of communication interfaces and the shared nature of the wireless environment.
- **Spectrum Management**: the main concerns refer to unlicensed bands in the mmWave and THz spectrum and the spectrum scarcity in the below 10 GHz region.
- **Sustainability**: emphasis on the contradiction of low-carbon solutions proposed vs the large deployment of small cells that will heavily increase the energy consumption. The total power consumption is increasing because the data consumption increases more than the data efficiency improves.
Question

Market, M5
What do you consider to be the greatest obstacle for the deployment of 6G networks? *Per stream*

Key Insights

- Stream B and Stream D projects indicate deployment costs as the main obstacle.
- The lack of trust in AI solutions is the top obstacle for Stream A projects, whereas the lack of demand for unique 6G services is the main concern for Stream C ones.
- Only Stream B and D indicate the competition of new NTN services as an obstacle.
- No Stream C projects indicate security and privacy, interoperability, lack of appropriate legislation, nor spectrum availability as obstacles.
- The lack of appropriate legislation is seen as a problem by Stream A and B projects.

Chart:

- **Low-carbon solutions vs increased resource consumption**
- **Competition and lock-in attempts from incumbent actors**
- **Competition of new NTN services (LEO satellites)**
- **Lack of demand for 6G unique services**
- **Deployment costs**
- **Security & privacy concerns**
- **Interoperability**
- **Lack of trust in AI solutions**
- **Spectrum availability**
- **Lack of appropriate legislation**

- *Stream A (7 projects) Stream B (19 projects) Stream C (3 projects) Stream D (4 projects)*

14/12/2023
4G enabled the “App ecosystem”. Do you believe 6G can accomplish something similar? If yes, what would be your estimation as to the novel market section that 6G may enable?

Reliable IOT
- The levels of reliability that 6G will guarantee may help shaping a “things ecosystem”.
- Transforming large volumes of IoT data (via AI), into valuable and actionable knowledge, able to automate and optimise the decision-making process in multiple sectors.

AR/VR/XR
- 6G’s could enable more immersive and realistic VR/AR experiences.
- Holographic representations are expected to become key in a wide range of scenarios.
- Accomplish an “immersive app/service ecosystem” beyond handheld devices/computer/tv screens
- Realisation of the “metaverse ecosystem”.

New services
- Users can provide the computational capabilities of their devices to facilitate processing in multi-access edge computing environments.
- Advanced telemedicine capabilities through remote-surgeries and real-time monitoring of patients.
- Availability of industrial and consumer robots, smart-city ecosystem; and many others.

Sustainability
- Seamless interaction between several technologies decreasing energy consumption and processing time, and increases trust, stability, robustness and performance.
- The merits of power and energy efficiency in the context of 6G could be a driver of adoption.
Market, M7

Key exploitable results (KERs) expected to be delivered by projects

<table>
<thead>
<tr>
<th>NETWORK TECHNOLOGIES</th>
<th>MANAGEMENT</th>
<th>SECURITY AND PRIVACY</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fully integrated NTN into 6G</td>
<td>• Distributed domain orchestration platforms with ZTP</td>
<td>• A novel security and privacy toolbox</td>
<td>Sustainability</td>
</tr>
<tr>
<td>• PON Solutions</td>
<td>• Explainable AI/Edge</td>
<td>• Realistic blockchain and attacks models</td>
<td>• Hardware GPU based acceleration offloading of energy intensive mMIMO RAN function</td>
</tr>
<tr>
<td>• Packet-Optical DPUs</td>
<td>• System models for predicting performance of the dual carrier systems</td>
<td>• Confidential toolkit</td>
<td>• Energy Efficient DSP</td>
</tr>
<tr>
<td>• Waveform and radio protocol design including mobility and multi-connectivity</td>
<td>• Latency-aware access in the unlicensed spectrum</td>
<td>• Set of cryptographic or enablement libraries, for confidential computing and confidential networking</td>
<td>• Ultra-high rate and low-energy transmitters</td>
</tr>
<tr>
<td></td>
<td>• Centralised/distributed/hybrid radio resource management</td>
<td>• Distributed AI engine for services pre-assessment</td>
<td>• AI</td>
</tr>
<tr>
<td></td>
<td>• Deterministic wireless transmission</td>
<td>• Threat Detector and Mitigation Engine</td>
<td>• Intelligent and trustworthy edge computing platform supporting highly demanding XR applications</td>
</tr>
<tr>
<td></td>
<td>• Wireless-friendly TSN and DelNet</td>
<td>• XAI toolbox for decentralised security analytics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Photonic-based millimetre-wave/THz antenna arrays, pursuing high-gain beamformed and beam-steerable RF beams</td>
<td>• Data anonymization streaming pipelines Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• THz reconfigurable intelligent surfaces (reflective and transmissive)</td>
<td>• AI-driven decision-making mitigation framework that allows to prioritise threats and come up with a mitigation plan and create a complete threat orchestration ecosystem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OpenRAN platform for Cell-Free mMIMO prototyping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THANK YOU FOR YOUR ATTENTION