SIT Signal Processing and Communications (SIGCOM) Group

Dr. Konstantinos Ntontin

Research Scientist Interdisciplinary Centre for Security, Reliability and Trust

SIGCOM in Numbers

Created in 2009

Total estimated **budget** 2024 ~ ca 11MEuros

- 2 Prof. (2 IEEE Fellows)
- 5 Research Scientists (permanent)
- 5 Research Scientists (contract)
- 28 PostDocs
- 26 PhDs
- 14 Research Fellows
- 3 Research Specialists
- 3 Support Personnel

2

Main Areas:

- Wireless Comms & Networking
- Non-Terrestrial Networks
- Quantum Communications

https://www.uni.lu/snt-en/research-groups/sigcom/

SIGCOM projects on Wireless / SatComs

>60 Projects in the past 11 years

10 EC projects (FP7 & H2020 & Horizon Europe & ERC & CHISTERA)

>20 National projects(3 bilateral withBelgium, France, UK)

>30 ESA projects

Coordinators of HORIZON-JU-SNS-2022-STREAM-B-01-03 ETHER project

3

SIGCOM track record on Wireless / SatComs

Number of SIGCOM publications the past 14 years

Distinctions

2014 IEEE ComSoc, <u>Distinguished Contributions to Satellite</u> <u>Communications</u> Award 2018 EURASIP Group Technical Achievement Award

Best Paper Awards

2015 CROWNCOM 2017 ICSSC 2018 EUSASIP JSC 2021 IEEE 5GWF 2022 WCNC

2014 FNR Best Thesis Award 2019 FNR Outstanding Scientific Publication Award

4 ERC grants (2 ERC Advanced Grants, 2 ERC PoC)

48 opportunities/invention disclosures

57 patent families

SNT

6G Research Areas

6G Research Areas

Use Cases

6

- IoT verticals (i.e. Industry 5.0, smart cities, E-health etc.)
- Unmanned Aerial Vehicles/Drones
- Integrated Satellite-Aerial-Terrestrial Networks
- Quantum Communications and Key Distribution
- Spectrum Management and Coexistence
- Tactile Internet
- Autonomous Transportation (i.e., self-driving vehicles)

Analytical Tools and Algorithms

- Machine Learning/Artificial Intelligence
 - Active learning, reinforcement learning, federated learning
 - Hybrid model-based and data-driven models
- Graph Theory and Graph Signal Processing
- Convex/Non-Convex Optimization and Matlab-Based
 System-Level Simulators

Technological Enablers

- Cell-Free Communications
 - Cell-free Massive MIMO/ Distributed antenna systems
- Smart Radio Environments
 - Reconfigurable intelligent surfaces
 - Backscatter communications
- Machine-Type Communications
- Ultra-Reliable and Low-latency
 Communications
- Edge Computing and Caching
- Radio Access Network (RAN) Slicing
- Network Softwarization and Virtualization
 - Software defined networking
 - Network function virtualization

SNT

Laboratories

SIGCOM – Experimentation

SDR CommLab
SDN Lab
6GSPACE Lab

Network Virtualization Testbed

Objectives:

Proof of Concept/Market
 Lab Demonstration
 Patenting/Licensing
 Spin-off

Lab Description

SDR CommLab:

9

- □ Focus on wireless communication systems for testing and validating digital signal processing algorithms
- End-to-end/Proof of Concept through real-time wireless communication testbeds for modeling, design, and testing of DSP algorithms
- Applications related to: interference management techniques for satellite communication, emulation of satellite communication systems, spectrum sensing for Cognitive Radio (CR) technologies, Spectrum Monitoring and Multiple-Input Multiple-Output (MIMO) systems

SDN Lab:

- Use of a network virtualization testbed
- **D** Experimentation platform, based on SDN
- validation of new autonomous network-slicing algorithms and their performance evaluation in integrated terrestrial-satellite systems

GGSPACE Lab:

- □ Testing, validation and space operations demonstration for:
 - Earth-orbiting satellite communications and PNT
 - Earth-Moon communications and PNT
- Evaluation of different small satellite formation control and cooperation configurations for non-terrestrial 5G networks
- Realistic emulation of a space mission control room for communications and remote control of lunar rovers
- □ Al acceleration of satellite and space communications using COTS AI chipsets

SIT HORIZON-JU-SNS-2024

HORIZON-JU-SNS-2024

Calls and topics we are interested in and can contribute to: HORIZON-JU-SNS-2024-STREAM-B-01-01

- □ New design approaches for 6G system architecture systems
- □ Native and trustworthy integration of AI for telecommunications

□ HORIZON-JU-SNS-2024-STREAM-B-01-02

- Novel techniques for integrated sensing and communication
- □ Machine learning empowered physical layer evolutions
- Cell-free and extreme exploitation of MIMO technologies potentially including reconfigurable surfaces
- □ Key functionalities and technologies for 6G RAN system design
- Seamless integration of multiple frequency bands

□ HORIZON-JU-SNS-2024-STREAM-B-01-03

- □ 3D networking for 6G networks
- Unified NTN service provision

□ HORIZON-JU-SNS-2024-STREAM-B-01-04

Integration of secured 6G communications via Quantum key distribution and post-quantum cryptography support

uni.lu <u>Snt</u>

Interdisciplinary Centre for Security, Reliability and Trust

Contact:

Symeon Chatzinotas Chief Scientist I Symeon.Chatzinotas@uni.lu

Konstantinos Ntontin Research Scientist kostantinos.ntontin@uni.lu

Connect with us

SnT, Interdisciplinary Centre for Security, Reliability and Trust