6G STANDARDISATION REQUIREMENTS – INT5GENT VIEW

Luis M. Contreras
Telefónica Innovación Digital
KEY PURPOSE OF STANDARDIZATION

› Facilitate interoperability among different implementations on essential functionality and system behavior
› Ensure feasibility of technical alternative outcomes
› Identify common procedures, and similar inputs and outputs in complex systems
› Allow the coexistence of different implementations conformant to the standard specifications
› Reduce entropy by focusing on well-adopted solutions
INT5GENT APPROACH

› Put emphasis on operational aspects end-to-end, difficult to tackle on typically isolated SDOs
› Exercise the standard propositions against use cases, identifying gaps and potential solutions for providing feedback to SDOs
› Leverage on industry-driven fora to close the loop in terms of product requirements and specifications
ALIGNMENT WITH MAIN STANDARDS

Int5Gent standardization contributions are focused on IETF Network Slice NBI and ONF TAPI
3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications standards associations, known as the Organizational Partners.

The scope of standardization of 3GPP:
1. Radio Access Network (RAN)
2. Core Network (CN)
3. Terminals (UE)
4. Operations, Administration, Maintenance and Provisioning (OAM&P)
5. Interoperability and Roaming

ETSI ISG on Network Functions Virtualization (NFV) has defined a Management and Orchestration (MANO) framework for the operations and lifecycle management of virtual network functions and network services.

The scope of standardization by the O-RAN Alliance:
1. Open Interfaces in RAN elements
2. RAN Intelligent Controller (RIC)
3. Virtualization and White Box Hardware
4. Open Software
5. Interoperability

The Internet Engineering Task Force (IETF) is an open standards organization, which develops and promotes voluntary Internet standards.

The scope of standardization of the IETF includes:
1. Internet Protocols
2. Internet Architecture
3. Internet Security
4. Transport and Routing
5. Applications and Services
6. Operations and Management
7. Emerging Technologies
MOBILE NETWORK SLICING ARCHITECTURE AND SDOS

PLMN ID based separation

NSSI based slicing

NSSI based slicing

UPF(s)

IAFA #4-2 -- 6G Standardisation Requirements
<table>
<thead>
<tr>
<th>SDO</th>
<th>Group</th>
<th>Partner</th>
<th>Int5Gent Related Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIP</td>
<td>CANDI</td>
<td>CTTC TID</td>
<td>Elaboration of TIP /CANDI White Paper on the “Integration with GNPy” Optical PoC.</td>
</tr>
<tr>
<td>TIP</td>
<td>MUST/TIP</td>
<td>TID</td>
<td>TAPI 2.1.3 as reference implementation for technical validation and 2024 production in TIP. TAPI 2.5 as target implementation for 2025.</td>
</tr>
<tr>
<td>ONF/Linux Foundation</td>
<td>OTCC/T-API</td>
<td>CTTC TID</td>
<td>Definition of photonic media extensions and use cases. Editor of TAPI TR-547 Reference Implementation Agreement. Elaboration of Use Cases for the (constrained) provisioning of services, OAM and Notifications. Contributor to TAPI TR-548 on Streaming Initial discussions on TAPI extensions in support of GNpy TAPI standardization is moved from ONF to Linux Foundation.</td>
</tr>
<tr>
<td>ETSI</td>
<td>TFS</td>
<td>TID</td>
<td>Topology modules used in the transport slice controller are implemented with ETSI TFS opensource group.</td>
</tr>
<tr>
<td>3GPP</td>
<td>TN</td>
<td>TID</td>
<td>Telefonica and other companies requested a “Change Request” in 3GPP to improve Transport Network (TN) integration. This CR was finally adopted in 3GPP TS-28.541, Clause 6.3.41, as ConnectionPointInfo attribute. Applicable to Rel. 18.</td>
</tr>
<tr>
<td>ORAN</td>
<td>XHAUL</td>
<td>TID</td>
<td>Participating on the E2E ORAN definition (Xhaul Packet Switched Architectures and Solutions 5.0, Management interfaces for Transport Network Elements 6.0). Contributions on slicing topic for the latest version of the document to be released in March 2024 (new informational Annex).</td>
</tr>
</tbody>
</table>

IAFA #4-2 -- 6G Standardisation Requirements
Standardization is key for rapid progress and adoption of technology advancements.

Natural fragmentation in standardization activities requires joint work and experimentation to fill the gaps.

Industrial fora can speed up adoption by fast transfer of requirements to the industry.

Standard specifications permit different implementations to coexist and enrich the market.

A comprehensive approach, as in Int5Gent, can facilitate the overall cycle from technical inception up to production.
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No. 957403.
IETF CONTRIBUTIONS

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
<th>Int5Gent contribution</th>
<th>References</th>
</tr>
</thead>
</table>
| IETF Network Slices | 3GPP does not specify slicing capabilities in the Transport Network. In order to cover such gap, IETF is working on the definition of what is called IETF Network Slices, that essentially describes how to request and realized network slices requested by 3GPP systems with IETF-based technologies. | Connecting 3GPP slices through IETF Network Slice services. Mapping process between 3GPP and IETF network slices | IETF TEAS GROUP
draft-contreras-teas-3gpp-ietf-slice-mapping
draft-wd-teas-ietf-network-slice-nbi-yang
draft-ietf-teas-ietf-network-slices-08
draft-ietf-teas-5g-network-slice-application-02. |
ONF Contributions

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
<th>Int5Gent contribution</th>
<th>References</th>
</tr>
</thead>
</table>
| ONF TAPI | i) The adoption of ONF T-API as NBI for Optical SDN Controller and OLS SDN Controller ii) the increasing relevance that such interface adopted by key major projects such as Telecom Infra Project and iii) the continuous presence CTTC and TID personnel in the group that performs TAPI standardization. | Framework for the usage of TAPI v2.1.3 to become the basis for interoperability events. Use cases that address operators’ requirements (e.g. topology discovery, DSR and photonic media provisioning and path computation. The refinement of data models to better support such use cases. | ONF Technical Report (TR-547) https://opennetworking.org/wp-content/uploads/2021/12/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.pdf