Native AI 6G architectures: Research Challenges and SDO Opportunities

Professor Tasos Dagiuklas

SuITE Research Group

Head of Cognitive Systems Research Centre

London South Bank University

UK

https://www.suitelab.org

Why AI in Telecommunications

Source: UKTIN, 2024

SuiTE Research Group

AI/ML Deployment in Networking

Independent AI/ML

Co-ordinated AI/ML

Native AI/ML

- · Proprietary ML deployment
- Proprietary data collection

Network

- Co-ordination between network & device
- Proprietary & standardized ML procedures
- · Data collection for both training and monitoring
- Autonomous ML deployment between network and devices across all layers
- · ML procedures to train performance and adapt to different environments
- From DevOps to MLOps

SuiTE Research Group

Use of ML in 5G networks

- RAN Functionalities (Energy Efficiency, Interference)
- Predict Failures and Outages
- Automated Network Functions (routing, policy)

SuiTE Research Group

SON vs IBN

	Self-Organised Networks (SON)	Intent-Based Networking (IBN)
Objective	 Automate learning, configuration, optimization, healing. 	 Align network configurations and operations with business intentions.
Automation	 Network tasks 	 Autonomous network operations based on high- level business intents and policies
Technologies	Machine LearningData AnalyticsNetwork Intelligence	Intent translationMachine learningClosed- loop operation
Benefits	Improved QoENetwork EfficiencyReduced OPEX	 Autonomous zero touch network management Agility operational efficiency
0 /77 0	6 GS standardisation Requirements	

SuiTE Research Group

AI in 5G and Beyond

- Radio Network
- Management and Core

SuiTE Research Group

AI in 5G and Beyond

Radio Network

Management and Data Core Level

SuiTE Research Group

RAN

- AI Optimisation
 - CSI feedback enhancements
 - Beam management
 - Positioning accuracy
- Native AI Design
 - Physical layer
 - transmitter, channel and the receiver
 - MAC Layer
 - Random Access, Spectrum Sharing

SuiTE Research Group

AI in 5G and Beyond

Radio Network

Management and Core

SuiTE Research Group

Management and Data Core

- MDAF (Management Data Analytics Function): It is a service-based management architecture
 - Deployment analytics services for automated network management and orchestration
 - Data-driven decisions drive the logic of the NSMF (Network Slice) and NSSMF (Network Slice Subnets) Management Functions
- NWDAF (network data analytics function):
 - Analytics logical function (AnLF) and model training logical function (MTLF)
 - A 5G network can feature several NWDAF instances, each associated with a different service area

Next Steps and Roadmap

- Expose monitoring and status information about resource utilization to authorized third parties
- Inform AI/ML operation about predictions of changes in network conditions
- IBN facilitating NS requirements
- Multi-domain end-to-end network slicing

Transition to Distributed Intelligence-(1)

Parallel Training

 partition the data and feed the different portions to a set of distributed nodes, deploying the same model.

Model Splitting

- Different portions of a complex ML model are executed sequentially in different processing nodes
- Decision on data handling vs ML Deployment

Federated Learning

the model is locally trained on their own data by distributed devices

Explainable AI

XAI has been designed to explain decisions made by AI

SuiTE Research Group

Transition to Distributed Intelligence-(2)

Transfer Learning

- partition the data and feed the different portions to a set of distributed nodes, deploying the same model.
- Distributed Reinforcement Learning
 - Different portions of a complex ML model are executed sequentially in different processing nodes
 - A learner takes actions in a stochastic environment over a sequence of time steps, to maximize the long-term cumulative rewards received from the interacting environment according to a given policy

TN/NTN Integration

27

Challenges

Multi-domain orchestrator

- Edge Cloud Multi-tenant utilization and AI Workload management
- Network slicing in hybrid TN/NTN
- NetApps provisioning
- Resilience

SuiTE Research Group

Questions

Email: <u>tdagiuklas@lsbu.ac.uk</u> URL: www.suitelab.org

April 2024

SuiTE Research Group