

Stream B & D Joint Workshop | 16.05.2024

TARGET-X | Overall Objective

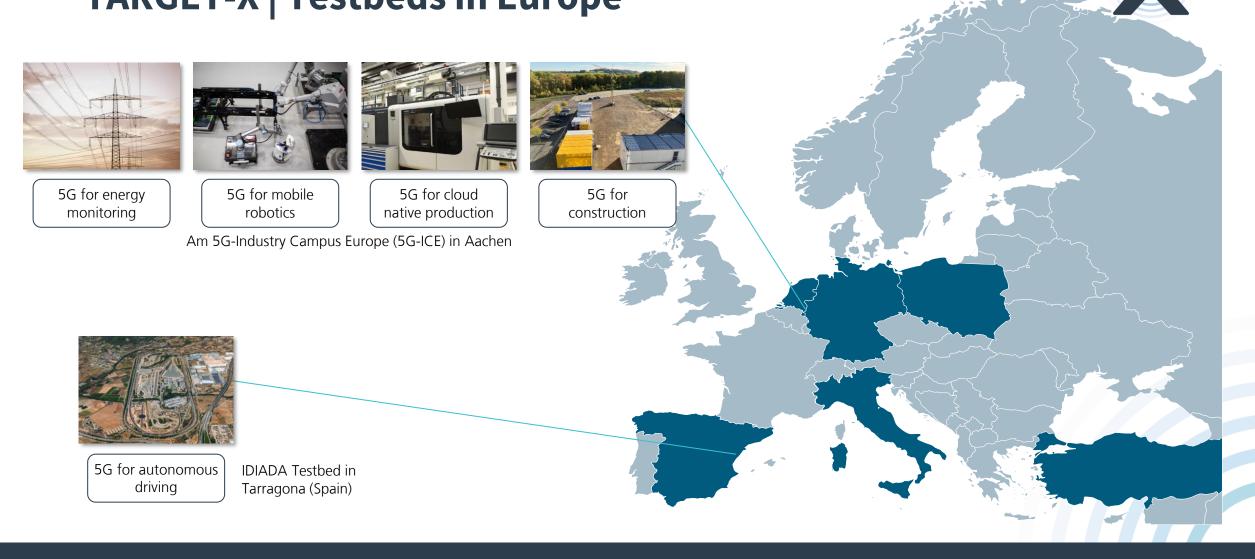
TARGET-X envisions to accelerate the digital transformation of different verticals based on the integration of 5G technology into these verticals


- Installation of trial sites and prototypes
- Knowledge transfer to new verticals
- Gathering knowledge through practical experience for the further development of 5G and 6G
- Transfer to industry through cascaded funding

TARGET-X | Structural Approach


Work Package Structure

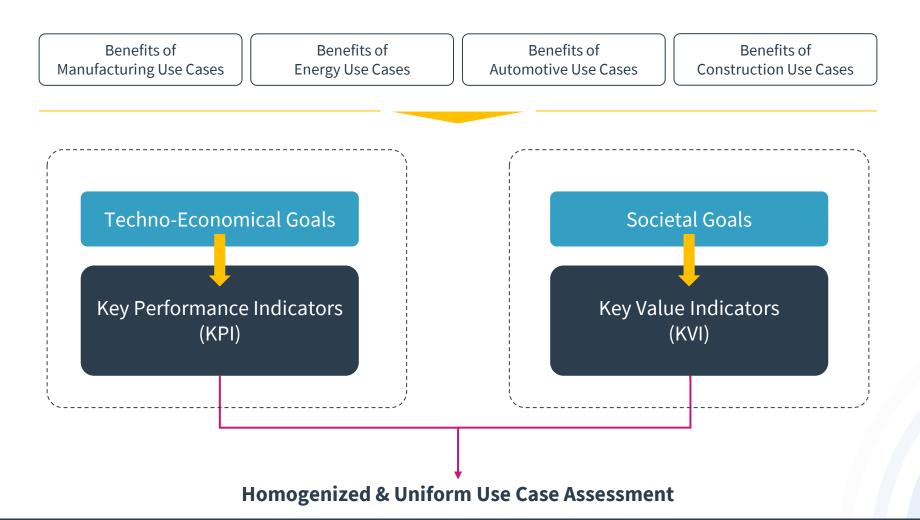
- 9 interdisciplinary work packages in total
- 6 work packages focusing on the technical aspects of the project



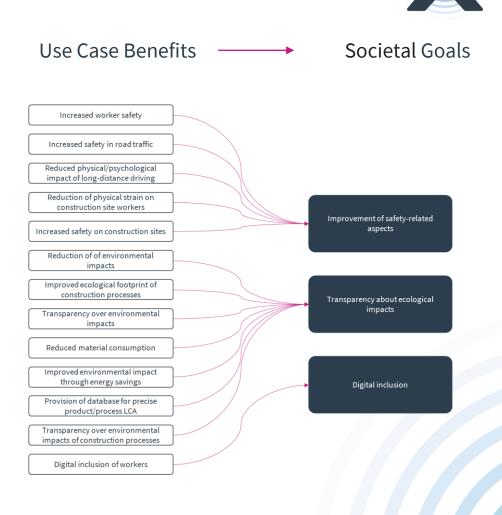
TARGET-X | Overall Concept

TARGET-X | **Testbeds in Europe**

TARGET-X | Use Case and KPI/KVI Definition


Number of Use Case	Domain of the Use Case	Use Case Classes	Use Case Name	Use Case Description	Catalog of require	ments
Please number your use cases	Please select a domain to which your use case can be assigned	Please select a use case class to which your use case can be assigned	Please select a short and precise name for your use case	Please add a short description of your use case	Please add a sequential description of your use care by dividing the description this chronologically consecutiv care can be encoured in different scientistic, you can also add more columnistic a scientistic-based d	
1	Robotion	Closed-Loop Control		improved planning and control of motion of Mobile Minpulators (MM), and efficient communication enabled by Beyond SG technologies. The evaluation of different middlevare setups and the performance assessment of the communication layer ensure optimal system performance and enhance the overall efficiency of the bin- picking operation.	Scenario 1	Scenario 2
		Monitoring			Sings 1 MM Localizes and on the chop flow. Sings 2 MM approaches an assembly ration represented by a desk or bin. Sings 2 MM moves at aminot a sourching pose to can the industrial object. Sings 4 MM descer to the Clipect. Sings 4 MM moves at end-effector to the desk or bin, clipes and removes the object. Sings 6 MM moves at end-effector to be clipes at the property of a source of a safe handles. Sings 6 MM moves at end-effector to be clipes at the property of a source of a safe handle. Sings 6 MM moves at end-effector to be clipes at the property of a source of a safe handle. Sings 6 MM moves at end-effector to be conditioned at the source of additional to be at the source of a safe handle. Sings 6 MM moves are end-effector to be accord deals of bin, source the gipper and releases the object. Sings 10 MM navegates back to be initial starting position.	
		C Analytics				None
		Others				

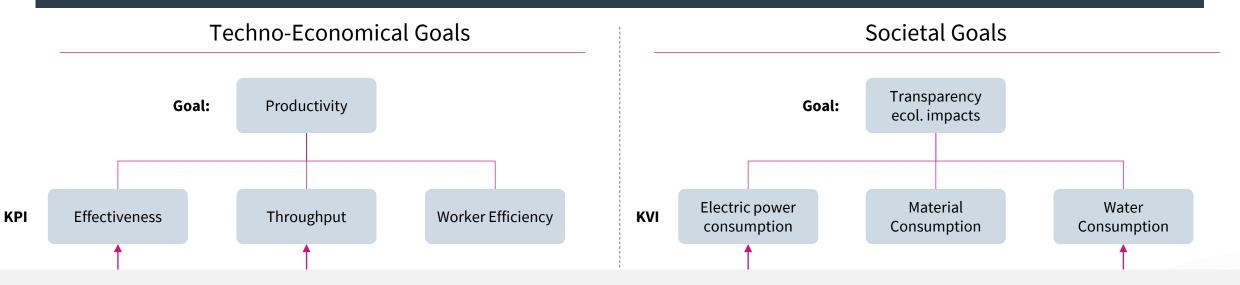
Use Case Descriptions


- Creation of a uniform use case descriptions with the catalog of requirements for all verticals
- Description of **11 use cases** in total
- Identification of the **benefits** that can be achieved through use case implementations and application
- Benefits from a techno-economical perspective: Expressed with KPI
- Benefits from a societal perspective: Expressed with KVI

Uniform Use Case Description as a Foundation for the Evaluation of the Use Cases

Better understanding of local grid conditions Traceability of machined workpieces Process optimization through increased insights Increased technical feasibility of tele-operated driving Expanding process insights Improvement of development of control algorithms for CAVs Increased process efficiency and stability Process optimization through increased coordination and control Increasing operational capability Reduced task time Reduced process costs Reduced tool wear Increasing operational efficiency Reduced material consumption Increased efficiency in the operation of CAVs Cost reduction through optimized energy usage Increased productivity

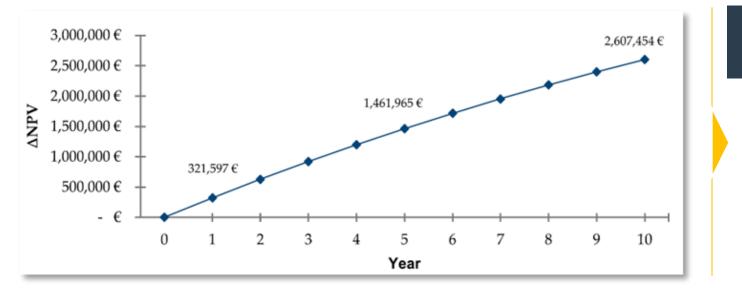
Techno-economic Goals	KPIs
Expanding process insights	Accuracy of process and product data
	Completeness of process and product data
	Consistency of process and product data
	Reliability of process and product data
	Timeliness of process and product data
	Uniqueness of process and product data
	Validity of process and product data
ncreasing Operational	Process performance index (P _{pk})
apability	Process capability ($c_p \& c_{pk}$)
	Process variability
ncreasing Process Efficiency	Cycle time
	Throughput
	First-pass yield
	Overall Equipment Efficiency (OEE)
	Error rate
	Quality rate
	Worker efficiency


17 KPIs

Societal Goals	KVIs
Improvement of Safety-Related	Work accident rate manufacturing
Aspects	Work accident rate construction
	Absolute number of prevented traffic accidents (sim. based)
Transparency About Ecological Impacts	Global Warming Potential, GWP
	Water consumption
	Ozone depletion
	Photochemical ozone formation
	Depletion of abiotic resources (minerals and metals)
	Depletion of abiotic resources (fossil fuels)
Digital Inclusion	Digital literacy

10 KVIs

Exemplary KPI/KVI Calculation for the Manufacturing Vertical



Equations will be defined for each **KPI** and **KVI** of each **goal** of each **vertical** so that a **common ground** for the **evaluation** of all use cases from TARGET-X is set

TARGET-X | Outlook

Planned towards the end of the project:

5G Rol Tool is ready to be adapted and can be expanded to include further use cases from TARGET-X

For the MAF conceptualization, an Excel tool will be used

Trial Platform for 5G Evolution – Cross Industry on Large Scale www.target-x.eu

Dissemination Level: internal

TARGET-X | **Publications**

- WONS 24 | The Application of 5G Networks on Construction Sites and in Underground Mines: Successful Outcomes from Field Trials
- Paper was created with results from 5G.NAMICO and outlook on research activities in TARGET-X
- Extended version will be created with a stronger focus on TARGET-X, will be published in Elsevier Computer Communication

- 5G-ACIA Business Value and Return-on-Invest Calculation for Industrial 5G Use Cases
- Work Item in WG 05 (Industrial 5G in Practice) of 5G-ACIA
- Whitepaper focusing on methodology of the use case assessment will be published in Q3/Q4 2024

Thank you for attention!

Contact

contact.target-x@ipt.fraunhofer.de

<u>www.target-x.eu</u>

<u>Visit us on LinkedIn</u>

Disclaimer:

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the other granting authorities. Neither the European Union nor the granting authority can be held responsible for them.