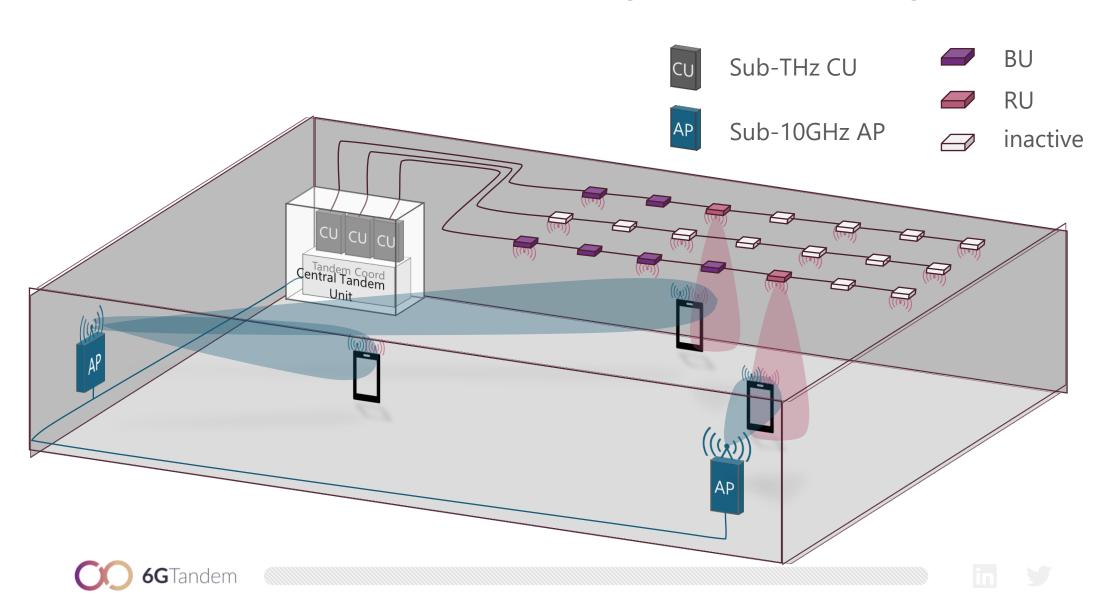
horizon-6gtandem.eu

6GTandem KPI/KVI

Parisa Aghdam (Ericsson)



horizon-6gtandem.eu

6GTandem system, topology and terminology

Tandem operation for E2E services opens new possibilities

Sub-THz user plane:
Offers high performance services

Sub-10GHz: control plane: Enables smooth/reliable operation

Enabling technologies in 6GTandem

- We target (very) high bandwidth (over Sub-THz link) to provide throughput and enable high accuracy positioning
- Dense multi-user capacity: schedule users fibers
- Dual frequency operation

KVIs

KVIs

- Lowering Capex and Opex
 - Radio stripe is **flexible** and is a **light** and **low-cost** deployment
 - Radio stripe could be installed on the walls and ceilings, bringing the RUs closer to the users, adding more degrees of freedom for the installation
- Socio-economics:
 - Needs of **society** and the **industries**, when it comes to **health**, **entertainment** and improved **industrial processes**.

Literature review: we have mainly scouted the use cases from the relevant previous/ongoing EU projects (such as Hexa-X, Reindeer) as well as the latest 3GPP documents

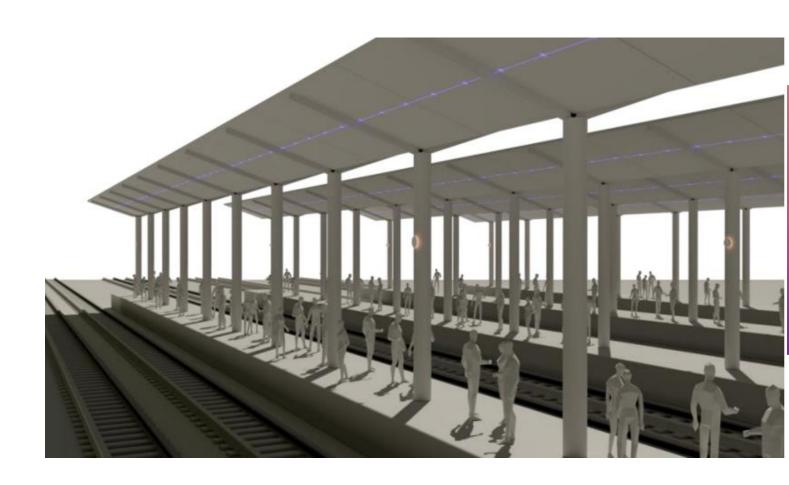
Deployment Scenarios

6

3 selected environments: Industrial sites, sport event arenas, and public transportation hubs

Link budget calculations helped us with identifying the **requirements** (e.g. the celling height ranging from **3-13m**) and sketching deployment scenarios

6G wireless connectivity need for: Flexible, autonomously controlled and adaptable to new production scenarios

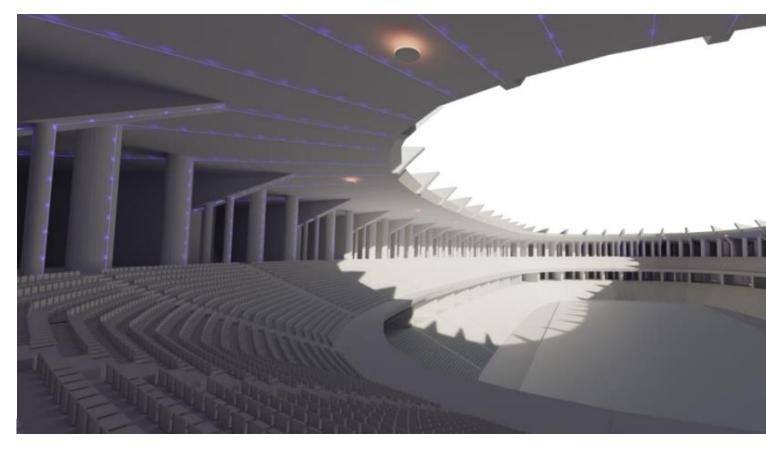

Deployment Scenarios - Public Transportation Hubs

Impact on society: Affecting the way people commute, offering the future of smart, efficient, and sustainable urban transportation system

Characteristic: Dense concentrations of passengers can place a significant strain on the communication infrastructure, congesting the wireless networks

Passenger's experience is paramount yet achieving and maintaining reliable communication systems is also a public safety concern

Deployment Scenarios- Sport Event Arenas



8

Impact on society: Smart and connected stadium market

Characteristics: Dense concentration of spectators

The inclusion of IoT in smart stadiums and spectators need to share/interact/stream high data rate video content from AR/VR/XR HMDs exerts ever increasing demand on mobile coverage

KPIs

KPI

Capacity	Peak Data Rate				
	User Experienced Data Rate				
	Network Capacity				
	Service Bandwidth				
0	Area Traffic Capacity				
	Connection Density				
	User Plane Latency				
	Control Plane Latency				
	E2E Service Latency				
	New Latency contribution				
_	components				
atency	E2E Application Latency – for				
ate	Video processing services				
-	Mission critical QoS of services –				
	latency related				
	Runtime Delay				
	Service Setup Delay				
	Slice Setup Delay				

SSC	Packet Error Rate						
	Layer2/3 packet transmission						
Packet Loss	success rate						
rke	Packet Loss Rate						
Pa	Frame Loss						
	Signal Packet Loss						
	Edge computational resource						
	usage						
, e	Operation expenditure @edge						
put	Delta in network management						
Compute	decision						
ŭ	Availability						
	Resource utilization						
	Computing resource utilization						
	Network Energy efficiency						
≥	Device Energy Efficiency						
Energy	Reduced energy consumption						
<u> </u>	VNF Energy consumption						
	reduction						

-	Anomaly detection					
Security	precision					
	Security conformance					
S	Tenant data privacy					
ocalization	Localization accuracy					
	Direction and orientation					
	accuracy					
	Localization related delays					
Ľ	Localization (error) integrity					
	Service availability					
Service	Service reliability					
	Service safety, integrity,					
	maintainability					
	CAPEX & OPEX reduction					

Identified Use Cases

	Listed use case suggestions										
AR/VR/XR	UC1: Mixed Reality (MR) in industrial environments										
	UC2: Professional Virtual Reality (VR) training										
	UC3: Remote surgery, enabled by VR telepresence										
	UC4: MR surgery										
	UC5: Social XR interaction/interactive classroom										
	UC6: AR-enriched events										
	UC7: XR in a metro/train station										
	UC8: Cooperative mobile robots & flexible manufacture	ing									
URLLC	UC9: Digital Twin (DT) in Industrial Environments										
	UC10: Position tracking of roots and UVs										
5	UC11: Tracking of goods and real-time inventory										
Positioning /tracking	UC12: Contact tracing and people tracking in large ver	nues									
	UC13: Location-based information transfer										
	UC14: Crowd scenarios in public transportation										
	UC15: Federated learning-based intelligent video surveillance for public safety in large venues										
	UC16: Sub-THz radio stripe as fronthaul solution										

Use cases-Key Performance Indicators

Assumptions:

- Real-time video compression with a ratio of 1:300 (h.265) is considered. Note: traffic volume **density** and **latency** is affected by this
- Use the sub-10GHz radio for providing **reliable coverage** and the sub-THz for coping with the stringent requirements on data rates as well as latency.

Key take aways:

Highest traffic volume density DL:

768Mbps/m²

User experience data rate: few Mbps-400 Mbps

Reliability: >5-nines in automation in industry 4.0

Table 13 Summary of KPIs for all the presented use-cases

	Use case														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Traffic volume density DL (Mbps/m²)	104	193	768	204	76	24	12	12	20	40	100	2	100	100 /25	259 000
Traffic volume density UL (Mbps/m²)	50	5	20	10	12	32	2	14	10	50	100	2	100	50/ 50	129 500
User density (1/m²)	1	1	2	2	2	4	2	2	0.2	5	100	2	10	1-2	
E2E latency (ms)	6+6	6+6	6+6	6+6	9+9	8+8	8+8	<25	<10 0	10	100	100 0	100 0	2-4	600 00
Reliability (%)	99	97	99	99	97	97	97	99.9 99	99.9 99 %	99.9 999	99.9	99.9 %	99 %	99.9 9	99
Positioning & mapping Accuracy (cm,degree)	<5 <5°	<5 <5°	<5 <5°	<5 <5°	<5 <5°	100 <5°	100 <5°	1-5 <1°	1 <10 °	1 <10 °	1	100	50	30	
Mobility(m/s)	<6	<6	<6	<2	<6	<6	<6	<10	<10	<10	<10	< 2	<2	2	