Towards Sustainability (SDG) Goals in 6G

Professor Tasos Dagiuklas

SuITE Research Group

Head of Cognitive Systems Research Centre

London South Bank University

UK

https://www.suitelab.org

IMT-2030 Use Case Scenarios

SuITE Research Group

6G Capabilities

- Communication
 - Mobility
 - Densification
 - Coverage
 - Integrated Sensing & Comms Green
- Resiliency
 - Confidentiality
 - Integrity
 - Availability

Al-Native

- Workload management
- Inference accuracy
- Model latency
- Network Efficiency
- Network Carbon Efficiency
- Battery requirement

Sustainable 6G or 6G for Sustainability

SuITE Research Group

RAN Energy Consumption

Source: GSMA, 2021

Source: NGMN, 2022

SuITE Research Group

IT Energy Consumption

Source: NGMN, 2023

SuITE Research Group

Vertical Sustainability Expectations-(1)

Manufacturing

 monitor and manage energy and water usage, reduce carbon emissions, and leverage renewable energy to power operations. 20%-30%

Smart agriculture

 real-time data collected by IoT-enabled drones and sensors resulted in more efficient and accurate pesticide spraying that could reduce overall pesticide use by 50%.

Vertical Sustainability Expectations-(2)

Energy

- 5G-connected smart grids will reduce gas and electricity consumption by 12% — and 6G will accelerate that progress.
- The ICT industry already has a large footprint (about 1/10th of global electricity consumption) and is <u>projected to</u> <u>rise significantly</u>.
- The wireless communication industry, a big part of the ICT sector, has made it a primary 6G objective to reduce energy usage and incorporate sustainability in its operational processes and lifecycle management.

Sustainability Complexity Tree in Future Mobile Networks

Source: Fraunhofer, Energy Efficiency and Sustainability, 2023

SuITE Research Group

UE Energy Savings

- 5G NR features for UE power saving
 - Discontinuous Reception (DRX) and the new Radio Resource Control (RRC) Inactive state
 - Transition from RRC Inactive to RRC Connected involves less signaling.
 - The use of a Wake-up Signal (WUS)
 - Number of Antennas for both uplink and downlink
 - Frequency of the RRM measurements
 - Paging Early Indication (PEI): The UE needs to monitor Paging Occasions (POs) to respond to incoming network messages (e.g. incoming call).

Network Savings-(1)

- Hardware Evolution
 - From CPU, FPGA, TPU, NPU
 - Energy measurement for recording the energy consumption of computing
- Virtualisation Evolution
 - Runtime environment (from VM to containers, Unikernels and WebAssembly).
 - A green design of AI must ensure that its implementation will excel resource saving benefits
 - Transfer learning
 - neural network pruning
 - Weight quantization
 - Subspace methods

Network Savings-(2)

RAN

- Efficient beam management
- The role of RIS: Electromagnetic properties can be dynamically adjusted
- Distributed MIMO: In a wide coverage area, they jointly serve UEs using the same resources.

Network Savings-(3)

- Network automation and orchestration
 - VNF and network-slicing
 - Move compute loads to data centres that have access to renewable energy
- Edge
 - Due to the high-power consumption in idle mode, servers in part-load also generally do not operate in an energyefficient manner.
 - Pushing ML and analytics in the edge
 - Outage/Failures management

KPIs for Energy/Power Efficiency

Metric	Unit	Description
Power Consumption	W	Energy that is either transferred or converted per time unit
Energy Consumption	KWh	Amount of power used over a period time
Energy Efficiency	KWh/unit	Ratio of output of performance in goods, service to the energy input
Power Efficiency	%	Output power/input power
Energy Performance	Mbps/KWh	Ratio between the produced work and the consumed power for producing this work in a time period

Short-to-Long Term Expectations

Short-Term: Process Optimisation

Medium Term: Engineering Optimisation

Long-Term: New technology enablers

SuITE Research Group

The Pathway to Climate Goals

Science-Based Targets:

- It provides a clearly defined pathway for companies and financial institutions to reduce greenhouse gas (GHG) emission.
- Global warming is limited to well below 2 C towards 1.5 C.

Net-Zero

- it specifies short- and long-term CO2 reduction targets.

Standardisation Activities-(1)

- ISO technical committee to environmental management
 - Committee SC5 (Life Cycle Assessment-LCA)
 - It is a standardized methodology to quantify the environmental impact to processes, products and services.
 - Committee SC7 (Greenhouse gas management)

Standardisation Activities-(2)

- Next Generation Mobile Networks Alliance (NGMA)
 - Green Mobile Networks
 - End-to-end service footprint calculation
 - Network Energy Efficiency
- Alliance for Telecommunications Industry Solutions
 - Green G working group
 - Reducing energy consumption and environmental impact on future wireless subystems

Standardisation Activities-(3)

3GPP

- LTE network saving signaling (Release 9)
- UE savings (from Release 16 and onwards)
 - further power savings have been defined for devices with reduced capabilities (e.g. wearables-medical devices, smart watches or industrial wireless sensors)
- RAN consumption (Release 18)

Standardisation Activities-(4)

ETSI

- LCA on ICT goods, products, services. Its application is regulated by ISO standards 14040 and 14044.
- Energy efficiency of wireless access networks and equipment, core networks.
- Efficiency metrics/KPI definition for equipment and network
- Network standby energy footprint
- Circular economy standards
- ITU
 - Study Group S5: Environment and circular economy topics
 - ETSI and ITU SG5 are working together to develop technically aligned standards on energy efficiency, power feeding solution, circular economy and network efficiency KPI and eco-design requirement for ICT.

Questions

Email: <u>tdagiuklas@lsbu.ac.uk</u> URL: www.suitelab.org

SuITE Research Group

6G Technology Enablers

- THz communications
- Reconfigurable Intelligent Surfaces
- Integration of Communication and Sensing
- Al-native 6G network architectures (self-learning, self-configuration, self-healing)

