ORIGAMI

Optimized Resource Integration And Global Architecture For Mobile Infrastructure For 6G

STREAM B STREAM D WORKSHOP

Marco Gramaglia mgramagl@it.uc3m.es UC3M

Enabling Technologies and KPIs

ORIGAMI

Enabling Technologies

- ORIGAMI aims to bring down 8 barriers that are currently making difficult the transitions towards 6G through a set of compelling use cases, leveraging on enabling technologies.
- Network Intelligence (NI): application of AI/ML solutions deep into the network architecture, including the edge and the far edge (i.e., radio)
- Architectural Elements: new items in the 6G Network Architecture that enable the utilization of the NI solutions in the network operation

Technologies

CRIGAMI

- Infrastructure awareness and hardware accelerator pooling
 - KPIs: Network Energy Efficiency, CAPEX and OPEX reduction, Service Reliability
- Interoperability of RAN Intelligent Controller
 - KPIs: Network Energy Efficiency, CAPEX and OPEX reduction, Service Reliability
- Scalable solutions for 6G complex network problem
 - KPIs: Network Energy efficiency, Accuracy and Maximum Latency of ML
- Distributed, and streamlined access to transport domain computing
 - Accuracy, Maximum Latency of ML, Peak Data Rate
- Global Operator Model
 - CAPEX and OPEX reduction, Control Plane Latency
- Decentralized Identity Model
 - Control Plane Latency
- Intelligent Anomaly Detection
 - Anomaly Detection recall and sensitivity, CAPEX and OPEX reduction
- Cloud Native Core
 - Control Plane efficiency (reduced signaling)

KPI Targets

KPI	Description	Network domain	Target	Score
K1	Energy efficiency (bits- per-joule)	RAN	100% higher than today's vRANs	1
K2	Cost efficiency (bps-per- \$)	RAN	10x higher than today's vRANs	1
КЗ	Reliability (%)	RAN	99.999% probability of meeting deadlines	1
K4	In-band ML model inference latency (ms/ms)	RAN, Transport	Sub-ms (RAN), or sub-ms (transport)	1
К5	In-band ML model inference accuracy (%)	RAN and Transport	≥95%	1
К6	In-band ML model inference throughput (Gbps)	Transport	100 Gbps	1
К7	Network CAPEX (\$)	Core	50% reduction	1
K8	Network energy consumption (KWh)	Core	35% less energy consumption	1
К9	Control plane latency (ms)	Core	50% lower latency than current procedures	1
K10	Anomaly detection recall and sensitivity	Core	> 0.85	1
K11	OPEX gains (\$)	Core	30% reduction	1
K12 /24	Control-plane efficiency (%)	Core	25% lower signaling overhead compared to network core without SCP	1

KVIs

Addressing KVIs, KVs and Sustainability in ORIGAMI

Methodology (to be evolved)

- 1. Identification KVs relevant to ORIGAMI*
 - 1. Environmental sustainability
 - 2. Economical sustainability and innovation
 - 3. Digital inclusion
 - 4.
- 2. Association of KVs either "use-case specific" or "architectural"
- 3. Definition and conceptualization of KVIs and mapping with KVs (At least one KVI per KV. Ideally, more than one KVI per KV):
 - 1. Definition of the KVI
 - 2. Metric: The measure used to assess performance or progress.
 - 3. Target value: the specific goal or objective
 - 1. Percentage of improvement
 - 2. The period/timeframe in which the target value should be achieved..
 - 3. Increase/decrease
- 4. Identify specific performance measurements (KPIs) that can contribute to achieve the target value

KV	Use-case or architectural	KVI (definition)	KVI (metric & target value	Target Value	KPIs contributing
Trustworthiness	Architectural	Architecture resilience	Ratio of computing resources successfully services provisioned vs experienced failures	99'999 %	KPI 1 KPI 2 KPI 3

*Full list in 6G-IA Whitepaper "What societal values will 6G address? Societal Key Values and Key Value Indicators analysed through 6G use cases.", May, 2022.

ORIGAMI