PREDICT:6G

Stream B – Stream D Workshop

May 2024

Funded by the European Union

This project was awarded funding by the European Union's Horizon Europe Research and Innovation programme under grant agreement N° 1101095890.

The vision of PREDICT-6G

E2E deterministic services over multiple networks with different technologies

High availability Low (zero) packet loss Failure resilient

E2E TIME SENSITIVE

Time-aware Bounded latency Low jitter Use of AI to predict events, states, demands, resources; Autonomous proactive actions

Reference Architecture

PREDICT-6G management scope

Networks (e.g., PM/CM)

Network services within one network (e.g., connectivity, det. SLA)

E2E services over multiple networks – (e.g., between devices attached to different networks)

These are Managed Entities (ME) for the PREDICT-6G framework.

E2E deterministic service flow (MDP)

- ► Request / configuration (AICP)
- ---> Measurement / status / insight (AICP)

Project KPIs

- Project KPIs available at: Deliverable 1.1
- Focus on Latency (time-sensitiveness) and Service (reliability)

Project KPIs

Family	KPI	Description	Goal
Latency	Service Latency	Time required by a deterministic network to deliver an application packet when performing a specific end-to-end communication service.	[1-10] milliseconds
	Jitter	Difference in milliseconds between the 0 quantile (minimum) and the 1-10^-3 quantile of the delay variation.	1 millisecond
Packet Loss	Packet Loss	Percentage of the packets lost during a period of time	< 10^-5
	Packet Ordering	Percentage of the packets in-sequence versus the total of packets in a deterministic network.	> 99.9999%

Project KPIs

Family	KPI	Description	Goal
Service	Reliability	Reliability is the success probability of performing a deterministic end-to-end communication service within a given time interval in the context of a defined SLA.	> 99.9999%
	Availability	Percentage of time in which deterministic networks successfully operate in the context of a defined SLA	> 99.9999%

Project KVIs

Family	KPI	Ongoing Work	
Facewater	Business Value	Ongoing " Business impact and migration guidelines towards 6G	
Ecosystem	Economic Growth	scenarios" activity	
Innovation	Security	Security resilience defined as the ability to adapt and recover from challenging and unforeseen situations. Ongoing work: Define an expected level and metric for the security resilience key value and map the combination and relevance of the related performance indicators into a value that represents security resilience.	

Smart Factory

Thank you!

Funded by the European Union

This project was awarded funding by the European Union's Horizon Europe Research and Innovation programme under grant agreement N° 1101095890.

predict-6g.eu

in

PREDICT-6G Project

the European Union