



Understanding the Potential of Open Campus Networks for driving an "Open 6G for all" -Lessons learned from the German Flagship Project CampusOS

Fraunhofer FOKUS / TU Berlin

Prof. Dr. Thomas Magedanz <u>thomas.magedanz@fokus.fraunhofer.de</u> / <u>thomas.magedanz@tu-berlin.de</u> https://www.6g-ready.net/



### Mobile Network Evolution Towards 6G – Driven by Open Campus Networks

Classic next G network evolution – every ten years a new G is arising ...

- Higher radio frequencies, more speed, more devices, new services, ...
- 2G made 1G international and digital
- 4G made 3G a useful mobile internet (VoIP/VoLTE + M2M/IoT)
- 5G is extending / optimizing 4G to multiple vertical application domains (the big challenge "how does one size fit all"?)
- 6G will likely extend 5G and make 5G "perfect" expectations should meet reality

Lots of lessons are learned from 5G deployments and evolution research

- 5G vertical applications are diverse and need dedicated network features → network customization
- End to end network modularity, interoperability, and openness will become key 

  driven by Open RAN concepts
- Network softwarization, cloudnative and AI enables more agile network developments 
  > DevOps and CI/CD
- 6G research seems to extend 5G towards higher frequencies (JCS), better coverage (NTNs), robustness, and sustainability
- We assume 6G will be (mainly) driven by 5G Campus Network evolution!

### Technology and societal Impacts for 5G Evolution towards 6G







### NGMN 6G Position Paper 09/2023 – Cooling down the 6G hype and expectations

- NGMN Alliance (NGMN) published end of September 2023 the "6G Position Statement: An Operator View". With this essential publication NGMN guides a course for the future of communication networks by taking a proactive stance and emphasising the needs for a new paradigm for graceful evolution and successful value creation and delivery.
- "NGMN is committed to ensuring that 6G delivers tangible benefits to end-users, simplifying network operations and ensuring sustainability, while offering compelling new experiences", he added

#### "Whatever 6G might become, it will be built on the foundations of 5G"

More Information and Download:

https://www.ngmn.org/highlight/ngmn-publishes-6g-position-statement.html





### Usage scenarios and overarching aspects of IMT-2030 (Source: ITU-R M.2160)

- The IMT-2030 framework highlights sustainability, connecting the unconnected, security and resilience, and ubiquitous intelligence as overarching aspects which act as design principles commonly applicable to all usage scenarios.
- It goes on to describe six usage scenarios, three of which expand existing IMT-2020 usage scenarios and three new usage scenarios.
- The first three categories of IMT-2030 framework immersive, reliable, massive - can directly be taken as an expansion of IMT-2020 usage scenarios such as eMBB, URLLC and mMTC.
- These usage scenarios are to cover a range of environments including hotspots, urban and rural, and together create increasing demands on aspects such as spectrum efficiency, higher data rates, lower latency, and increasing density. The IMT-2030 framework goes on to identify new capabilities related to sensing, AI, and positioning that may be used to enhance usage experience of each.







### Use case families





💹 Fraunhofer

FOKUS

### Timeline towards 6G Standardization in 3GPP

Tutorial @ CSCN23

07.11.2023

Page 8



### 6G will start with Release 21

![](_page_6_Picture_4.jpeg)

A Global Initiative for enabling early non-discrimentory access to 6G 6G can't be a "one size fits all" network – Build your own 6G

![](_page_7_Picture_1.jpeg)

This global initiative aims to allow every country / region to build its own local 6G ecosystem, ranging from advanced industrialized countries up to developing countries

- Lesson learned from 5G: huge complexity in use cases and technologies, slow adoption of 5G
- Global 5G standards are too complex and late, so what will be the outlook for 6G?
- Private / Enterprise / Campus Networks gain momentum and show the directions
- Targeted 5G/6G Application domains have their own ecosystems and connectivity becomes an integrated part of the verticals
- Local skills development requires open research infrastructures and toolkits 

   OpenRIT

![](_page_7_Picture_8.jpeg)

So lets enable the early exchange of best practices in building these OpenRITs

![](_page_7_Picture_10.jpeg)

Depending of who you are (Operators, Integrators, Providers, Enterprices, etc) Opportunities and Challenges of Software-based Open Architectures

### Opportunities

- More commercial flexibility to react to dynamic markets
- Implementation of different business models
- More flexibility for network customization
- Lower prices due to more competition
- More innovation in specific areas
- Easier entry for new players, i.e. SMEs
- Building of local eco systems digital sovereignty

### Challenges

- Company readiness for business model diversity
- Increasing complexity of value chains
- Integration complexities and costs
- Performance and efficiency limitations
- Limited size of existing eco systems
- Interoperability and Certification
- Legacy Interworking & Migration
- Skill transition / human resources education

![](_page_8_Picture_18.jpeg)

### What does "Open" mean?

### Openness is used in telecommunications since many years in many contexts ...

#### Motivated to create innovations and flexibility many different approaches have been taken:

- Open APIs typically on top of a closed (black box) network exposing network funntions
- Open Business Models flexibility in building and operating networks
- Open Eco Systems an increasing / open number of (local) suppliers / providers
- Open Data reuse of typically IOT data in a borader context (like Smart Cities)
- Open Source tricky free license but probably high costs in integrating / maintaining
- Open RAN Disaggregation of the Radio Network Components pushing competition and innovation
- Open Architectures Modularity, Interoperability and Plug & Play to provide flexibility
- **>** Open Testbeds allow to validate these approaches and establish the related eco systems!

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Picture_1.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_12_Picture_0.jpeg)

### Mapping current 5G Campus Network Innovation Areas to the 6G Continuum

| Research / Innovation Area | 5G Campus Networks            | 6G Continuum                          |  |
|----------------------------|-------------------------------|---------------------------------------|--|
| Higher frequencies         | mmWave                        | THz                                   |  |
| Localization               | Positioning                   | Positioning and Sensing (JCAS)        |  |
| Softwarization             | Cloud-native                  | Organic                               |  |
| Virtualization             | Edge                          | Infrastructure FREE                   |  |
| Disaggregation             | SBA, OpenRAN                  | Organic                               |  |
| Management                 | AI/ML optimizations           | Holistic/scheduled network management |  |
| Rural coverage             | Direct-to-(GEO/MEO) Satellite | multi-orbit/3D NTN                    |  |

![](_page_13_Picture_0.jpeg)

Building an ecosystem for 5G campus networks with open and modular network technologies and interoperable components

info@campus-os.org | www.campus-os.io

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

Supported by:

for Economic Affai and Climate Action

![](_page_14_Picture_0.jpeg)

### The German flagship project CampusOS

Supporting the establishment of the related local / sovereign ecosystem

for open and modular 5G campus networks in the German and European context

- Architecture building blocks, blueprints, HW / SW components
- System design and business models
- Testbeds, demonstrators and pilot applications in production, intra-logistics, connected mobility, construction sites and agriculture
- Complemented by application projects in safety services, wharfs, hospitals, science parks, ...

Supported by:

![](_page_14_Picture_9.jpeg)

n the basis of a decision y the German Bundestag

# Why Open and Modular 5G Campus Networks?

**Disaggregation and a new German / European Ecosystem** 

**Expected Benefits:** 

- Application-tailored networks
- Interoperable HW/SW components
- Openness for automation and AI innovations
- Faster innovation & time to market
- Digital sovereignty

- Lower market entry barriers (e.g. for SMEs and startups)
- New operating and business roles
- Larger ecosystem

![](_page_15_Picture_11.jpeg)

![](_page_15_Picture_12.jpeg)

Supported by

# CompusOS Project & Ecosystem

Fogship project funded by the German Federal Government

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_3.jpeg)

Federal Ministry for Economic Affairs and Climate Action

Supported by:

# **Gagship Project CampusOS across Germany**

*R* erence Testbeds & 4 Industrial demo case sites

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

Federal Ministry for Economic Affairs and Climate Action

![](_page_18_Picture_0.jpeg)

#### Industry 4.0 Intralogistics

- Communication in challenging environments
- Low-latency and resilient control of vehicles
- Volume-based data transmission of imaging mechanisms

#### **Connected mobility**

- Mobility applications in logistic yards, production sites
- Examples: autonomous/teleoperated driving, mobile robots
- Challenging requirements: asymmetric data rate & latency in UL and DL

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_11.jpeg)

für Wirtschaft und Klimaschutz

ufgrund eines Reschluss

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_15.jpeg)

Operating Models

**Ecosystem, Partnership** 22/15

![](_page_19_Picture_0.jpeg)

Construction Site logistics and workflow management

- Application scenarios in the field of networked construction sites and construction site logistics supported by nomadic node
- Near real-time coordination of distributed and partially mobile workflows using digital construction site twins

#### Neutral Host for agriculture

- Nomadic 5G cells based on the "neutral host" principle
- Use of licensed operator frequencies

![](_page_19_Picture_7.jpeg)

© Topcon Positioning Systems, A 5G Campus Network connects humans and machines at a construction site.

![](_page_19_Picture_9.jpeg)

Operating Models

![](_page_19_Picture_12.jpeg)

Gefördert durch:

für Wirtschaft und Klimaschutz

aufgrund eines Beschlusse des Deutschen Bundestage

# 5G Standalone Testbed @ FOKUS Atrium

### Indoor & Outdoor

Core-RAN Integration & Interoperability

E2E System Performance

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusse des Deutschen Bundestage

![](_page_20_Picture_7.jpeg)

s 🜔 Component Catalog

Operating Models

**Ecosystem, Partnership** 24/15

![](_page_21_Picture_0.jpeg)

### Validated Design for 1<sup>st</sup> Responder Use Case

### Coverage Schönhagen Airport

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

🛛 🜔 Architecture Blueprints 🛛 🔘 C

nts 🛛 🖸 Component Catalog

Operating Models

**Ecosystem, Partnership** 25/15

Ο

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_1.jpeg)

aufgrund eines Beschlusse des Deutschen Bundestage

26/15

![](_page_23_Picture_0.jpeg)

Value chain analysis and new business opportunities

- Differentiating factors of use cases
- Identify roles in the value chain
- Visualize value chains

#### Identification of operating models

- **Role description**
- Analyse trends of network operation
- Identify promising operating models

![](_page_23_Figure_9.jpeg)

💯 Campus**OS** 

**Operating Models** 

**Ecosystem, Partnership** 

Bundesministerium für Wirtschaft und Klimaschutz

27/15

aufgrund eines Reschlusse des Deutschen Bundestage

![](_page_24_Figure_0.jpeg)

### ني ج **CampusOS Architecture Approach**

End-to-End integration of campus networks and industrial environments

![](_page_25_Figure_2.jpeg)

aufgrund eines Beschlusse des Deutschen Bundestage

Bundesministerium

für Wirtschaft

und Klimaschutz

## **Component Catlogue**

# Architecture building blocks (ABBs)

architectural components that form an open and modular 5G campus network, e.g., a radio unit (RU) or distributed unit (DU)

**\*Pattern:** combination of ABBs that occur frequently in a certain combination; helpful to map, e.g., meaningful combinations of ABBs into different disaggregation options or splits.

#### **Blueprints**

Architecture instantiation (end-toend view of ABBs and patterns\*) for different use cases / requirements Tested solution building blocks (SBBs)

individual technical solutions realizing one or multiple architecture building blocks

Supported by:

![](_page_26_Picture_9.jpeg)

for Economic Affa

and Climate Action

# Architecture building blocks (just some examples ...)

Abstract description and attribute definitions

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

Supported by:

on the basis of a decision by the German Bundestag

Federal Ministry for Economic Affairs

and Climate Action

# Blueprint

#### Definition

- Description of application-specific endto-end architecture of a 5G campus network
- Simplifies the implementation of an application scenario (use case)
- Includes all relevant functional components (ABBs) and enables visualization of interfaces
- Establishes connection to solution components (SBBs) via the component catalogue

![](_page_28_Picture_6.jpeg)

#### Generic Blueprint for low latency and on premise data handling use cases

![](_page_28_Picture_8.jpeg)

Supported by:

![](_page_28_Picture_10.jpeg)

Federal Ministry for Economic Affair:

and Climate Action

# Blueprint Construction Site

![](_page_29_Figure_1.jpeg)

- Correction values that support the required precision in earthmoving and construction work are transmitted to the machines via the 5G network
- Data sovereignty for the construction company carrying out the work
- Blueprint shows 5G campus network architecture with ABBs mainly deployed on premise to meet the special requirements of construction sites

![](_page_29_Figure_5.jpeg)

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_7.jpeg)

Supported by:

![](_page_29_Picture_9.jpeg)

Federal Ministry

# **Final Roadshow @TOPCON**

![](_page_30_Picture_1.jpeg)

Final Demonstrator – Connected Construction Site @ TOPCON November 21, 2024

The following demos were presented:

- Nomadic 5G Node, Fraunhofer FOKUS
- Site Management Suite, TOPCON
- > O-RAN Network Management and Optimization, Fraunhofer FOKUS
- > 5G Open RAN, Node-H GmbH
- 5G-capable multi-purpose robot platform, Heinrich Hertz Institute HHI
- > O1 Performance Monitoring, Technische Universität Berlin
- Neutral Host, brown-iposs GmbH
- Video Orchestration, Smart Mobile Labs
- IoT Sensoring, BISDN GmbH
- Drive test scanner, Rohde & Schwarz

![](_page_30_Picture_14.jpeg)

![](_page_30_Picture_15.jpeg)

and Climate Actio

Supported by

## **OpenRAN-based System Layout in a Warehouse**

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

| •••    |      | _ |
|--------|------|---|
|        | •••  |   |
| •••• 🗖 |      |   |
|        | ···· |   |
| ···· [ |      |   |
|        |      |   |
|        |      |   |

**5G Core** 

Management

![](_page_31_Picture_6.jpeg)

IT/OT Intergration

| ••• |  |
|-----|--|
| ••• |  |
|     |  |

UC specific functionality

Supported by:

![](_page_31_Picture_11.jpeg)

on the basis of a decision by the German Bundestag

ederal Minist

for Economic Affair and Climate Action

# Blueprint

![](_page_32_Figure_1.jpeg)

| <br>···· |
|----------|
|          |
|          |
|          |
|          |

5G Core

Management

··· ···

| <br>•••• |            |  |
|----------|------------|--|
| <br>     |            |  |
|          | <b>TTT</b> |  |

IT/OT Intergration

UC specific functionality

|                           |                  |                                                        |                                                                    |                                       | Compute on external cloud |
|---------------------------|------------------|--------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|---------------------------|
|                           |                  | SMO                                                    |                                                                    |                                       | Compute on private cloud  |
|                           |                  | RAN Core Transport<br>Management Management Management | E2E Service                                                        | E2E App Services &<br>Monitoring Apps |                           |
| xApps                     | 5G-Core          | IT/OT<br>Management                                    | Monitoring<br>Monitoring<br>Monitoring<br>App/Service<br>Control + | External                              |                           |
| Near-RT RIC               | Control<br>Plane |                                                        | Orchestration                                                      | systems                               |                           |
| CU                        | Data<br>Plane    |                                                        | Compute<br>Infrastructure                                          | Hardware<br>Compute<br>Infrastructure | Compute                   |
| DU                        |                  |                                                        | Eugeciouu                                                          |                                       | on premises               |
|                           |                  |                                                        |                                                                    | UE Router                             |                           |
| RU                        |                  |                                                        | Router                                                             | Modem<br>Ext. UE                      |                           |
| gNodeB Ext. RU<br>Antenna |                  |                                                        | Switch                                                             | UC-Specific AMR                       |                           |
| 5G-RAN                    | 5G-Core          | Management                                             | IT/OT Integration                                                  | Functionality                         | Specialized HW            |

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

Federal Ministry for Economic Affairs and Climate Action

# **CampusOS - Private 5G Components Catalog – Release 3**

Evolution of Releases

#### **Entries in catalog**

![](_page_33_Figure_3.jpeg)

- Release date: 06.2024
- Version 2 of the tooling implemented
- Further update in 09.2024
- Blueprint visualization included
- Important contributions from satellite projects
- From now on, no more releases but continuous updates

![](_page_33_Figure_10.jpeg)

![](_page_33_Picture_11.jpeg)

for Economic Affa

and Climate Action

Supported by

# **Roadmap of Perpetuation through 5G-ALOE**

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

Supported by:

for Economic Affair and Climate Action

on the basis of a decision by the German Bundestag

### **5G-ALOE: Verstetigung des Momentums aus CampusOS**

Weiterentwickeln des Ökosystems, Stärkung von Partnerschaften, Fortführung der Projektergebnisse

![](_page_35_Figure_2.jpeg)

5G-ALOE

![](_page_35_Picture_3.jpeg)

Supported by:

for Economic Affai and Climate Action

on the basis of a decision by the German Bundestag

# CampusOS | Final Event, March 26, 2025

#### We would like to invite you to our final Event.

Location: Fraunhofer HHI | Science Tech Space | Salzufer 15/16, 10587 Berlin

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

Gefördert durch:

**Please register:** 

aufgrund eines Beschlusses des Deutschen Bundestages

Bundesministerium

für Wirtschaft und Klimaschutz Private / Enterprise Networks are gaining global momentum Lessons learned from the German CampusOS Activities

- The CampusOS activities are planned to end in spring 2025
- However, CampusOS will be consolidated as a sustainable initiative to grow the ecosystem
- Although CampusOS is not targeting 6G, as 5G technologies are in main focus, we can witness:
  - Network customization is key for deploying 5G, but complex to implement with an open ecosystem
  - Different business models and operation models are possible and guide network deployments
  - Trusted integrators will become key to bridge between enterprises and component providers
  - Maintenance of a Catalogue of tested components and related blue prints is key
  - Testbeds are key for component and end-to-end testing to fill up the ecosystem
  - Automation of various phases of a network life cycle will be key for the future to lower costs

![](_page_37_Picture_10.jpeg)

Towards an Open 6G for all → Build your own 6G where ever you are! Open 5G/6G Research Infrastructures and Toolkits enabling sustainable R&D

- 6G should be an evolution of 5G according to NGMN and operator statements around the world
- 6G research topics are very overlapping to current Campus Network research topics
  - → 5G Evolution is driven by emerging Open Modular Campus Networks
- But the open, modular network eco system is developing slowly but globally
- As shown by the German Flagship Project CampusOS the eco system needs reference architectures, blue prints, and component catalogues
- Open Source and Open Toolkits are becoming key for get every country started on its 6G journey
- We at FOKUS are open testbed and toolkit pioneers since 3G (IP-fication) and the softwarization of networks, and aim to help with the *Open 6G for all* and associated *Open6GRIT* initiatives

![](_page_38_Picture_8.jpeg)

The Global Initiative beyond open6Gnet.org and Open6GCore Open6GRIT - Open 6G Research Infrastructures and Toolkits

![](_page_39_Picture_1.jpeg)

- Global Initiative supported by 6G Platform Germany and many other initiatives in Europe, USA, Asia, and Africa, Including IEEE Furuture Networking Initiative, PAWR, Slices.RI,
  - Based on a former DAAD Initiative called UNIFI, which run 2012 2015 to build up unified 4G testbeds around the globe
  - See <u>www.daad-unifi.org</u>

![](_page_39_Picture_5.jpeg)

- International Workshop Series to unite passionate 5G/6G researchers looking for open testbeds
  - First Workshop held in Cape Town in March 2024
  - Next Workshop at IEEE Globecom 2024 in Cape Town in December 2024
- More at https://openrit-6g.org/

![](_page_39_Picture_10.jpeg)

![](_page_39_Picture_11.jpeg)

Open Research Infrastructures and Toolkits for Prototyping Next Generation Networks FOKUS/TUB Testbeds and Toolkits Evolution - Foundation for R&D Projects

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

Dedicated, private and campus networks

#### An extended R&D oriented implementation of the 5G core network (3GPP Release 16 and 17)

- Software based core network programs that can be deployed as containers, pods, VMs, …
  - Fundamental 5G core network functionality: AMF, SMF, UPF, PCF, UDM, AUSF, ...
  - Additional services: non-3GPP, location
- Main features for 5G:

Open5GCore Rel. 8

- Integrating with 5G NR SA, non-3GPP and satellite
- Data path diversity, local offload
- Advanced bearers, QoS and session management
- Network slice support
- Location service support
- Performance Benchmarking
- Own UE emulation of regular Android OS App
- Highly configurable for:
  - Edge-central split

![](_page_41_Figure_17.jpeg)

UPF3

Local Service

Hosting Node

((((( ) ))))

gNB

Simulation

Non-3GPP Access (WiFi, 5G/4G OTT, satellite, etc.)

**N3IWF** 

ື່ໜຶ່

UF Android

Regular App

5G NAS, data path

![](_page_41_Picture_18.jpeg)

NEF

GMLC

SCP

UDM

LMF

UPF4

Internet GW

Ethernet

Legend

**Open5GCore Function** 

3<sup>rd</sup> Party/External Functior

![](_page_41_Picture_19.jpeg)

### Ready-to-Run Open5GCore Setups

![](_page_42_Picture_1.jpeg)

Open5GCore runs as user space programs on top of common Linux OS distributions (Ubuntu 20.04+)

![](_page_42_Figure_3.jpeg)

Best effort support for integration with gNBs and UEs is provided in each license (please ask about current interop list)

![](_page_42_Picture_5.jpeg)

![](_page_43_Picture_0.jpeg)

### Roadmap for Open5GCore

- Customization of testbeds towards use cases and specific deployments (user equipment, hardware, virtualization, integration with applications etc.), integration of base stations and end devices is available anytime on-demand.
- We have already customers for Open5GCore until 2027

![](_page_43_Figure_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_44_Picture_0.jpeg)

#### **Engagement Models**

- 1. Use Open5GCore as it is for demonstrations or building things on top
- 2. Extend Open5GCore with new features
  - 1. Independent developments (with different partners involved)
    - 1. No involvement of Fraunhofer
    - 2. Partners with licenses can collaborate
  - 2. Fraunhofer developments
    - 1. For the next release adding the features to the roadmap
    - 2. As project with tight work contacts, milestones etc.

![](_page_44_Picture_10.jpeg)

![](_page_45_Picture_0.jpeg)

### Deployments and Reference Customers (from 2014 on)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

### 5G Playground: Implemented Use Cases based on Open5GCore Customization Options

![](_page_46_Picture_1.jpeg)

**Public Events:** 5G Nomadic Node at Festival of Lights 2019 in Berlin

![](_page_46_Picture_3.jpeg)

**Industry 4.0:** 5G-ACIA Testbed, 5G Campus Network for the Softwaredefined Factory

![](_page_46_Picture_5.jpeg)

**Disaster Management:** ALADIN project, Forest Firefighting in Brandenburg with 5G

![](_page_46_Picture_7.jpeg)

**eHealth:** FUDGE-5G project, Private 5G Networks for hospitals

![](_page_46_Picture_9.jpeg)

**Railway:** 5G VICTORI project, 5G Campus Network in the train stations

![](_page_46_Picture_11.jpeg)

**Aeronautics:** ESA SATis5, In-cabin entertainment with local 5G network

![](_page_46_Picture_13.jpeg)

**Mobile testbed:** 5Genesis project, ALADIN, CampusOS 5G out of the box with our modular Nomadic Node

![](_page_46_Picture_15.jpeg)

### 5G Playground to Go FOKUS Nomadic 5G Node – an open, modular, scalable 5G testbed in a box to go

![](_page_47_Picture_1.jpeg)

An adapted solution, addressing all the high variation in mobility, coverage area variation, energy consumption and size

![](_page_47_Figure_3.jpeg)

https://www.fokus.fraunhofer.de/en/fokus\_testbeds/5g-node

![](_page_47_Picture_5.jpeg)

### Nomadic and Mobile 5G Networks

Comprehensive systems which can be dynamically deployed at use case location

- Integrate with local devices
- Fit the local constraints: energy, weight, size, vibrations, weather, etc.
- Support for localized communication
- Trustful and reliable communication

This functionality is developed as part of:

![](_page_48_Picture_7.jpeg)

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

![](_page_48_Picture_10.jpeg)

![](_page_48_Picture_11.jpeg)

### 5G out of the box Robust, transportable set-up

#### Edge Compute and Network

Virtualization environment for Open5GCore of Fraunhofer FOKUS and for application services

Radio Technology and battery 5G SA multi-vendor support (band n78)

Various backhauling and non-3GPP technologies Satellite backhaul and WiFi-6 / 60GHz links for front- or backhaul access

Nomadic version of a 5G-ACIA approved tested

Blueprint for 3<sup>rd</sup> party, industrial nomadic deployments Open5GCore licensable for R&D and proof-of-concepts

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_8.jpeg)

# Getting 6G-Ready

### Towards an Open 6G for all - Roadmap

![](_page_50_Picture_2.jpeg)

![](_page_50_Figure_3.jpeg)

![](_page_50_Picture_4.jpeg)

### 6G Organic Core Network Concept

![](_page_51_Picture_1.jpeg)

Dual usage of the web-services architecture

- 1. Implement the core network functionality as a macro-web service
- Different front-ends for UE, RAN, data path, external, ...
- Single subscriber state
- 2. Implement the macro-web service workers as stateless micro-services
- Services are fully stateless
- Services should be procedural oriented as much of a procedure as possible to reduce horizontal communication between micro-services
- Other requirements:
  - No parallel requests from the same UE regulation at Front-end possible
  - Requests are triggered by the UE or a "puppet UE" in the core
  - Unified subscriber state

![](_page_51_Figure_13.jpeg)

### Open6GCore - Implementing Organic 6G Networks

![](_page_52_Picture_1.jpeg)

Each high-level functionality of 5G Core Network is a separate service

- Access Control, Authentication and Authorization (ACAA)

   subscriber authentication and authorization to use the
   network
- Connection Management (CM) idle mode related operations
- Mobility Management (MM) handover procedures
- Session Management (SM) data path resource allocation procedures

![](_page_52_Figure_7.jpeg)

# Open 5G and 6G Core Toolkits

#### Two toolkits with different goals:

- Open5GCore:
  - further development of beyond 5G core network functionality
  - customized deployments for use cases
- Open6GCore:
  - New flexibility, low complexity concepts
  - Docking of new services e.g. sensing
- Both should be able to connect to 5G and 6G UEs and RAN
- At the current moment we assume data path remains the same
- In time, Open6GCore would replace the Open5GCore

![](_page_53_Figure_11.jpeg)

Third party components

5G UE

![](_page_53_Picture_13.jpeg)

![](_page_53_Picture_14.jpeg)

# **Open6GCore** Architecture

![](_page_54_Figure_1.jpeg)

![](_page_54_Picture_2.jpeg)

**External Functions** 

# Open6GCore – binding of new services from 3<sup>rd</sup> Ptys

![](_page_55_Picture_1.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_55_Picture_3.jpeg)

Open6GNet.org - one way of contributing to Open 6G for all Initiative from TUB and UCT looking at Open Source Toolkits

![](_page_56_Picture_1.jpeg)

#### Motivation:

- Open5GCore might be to expensive for some universities and R&D partners
- TU Berlin studends don't have access to Open5GCore due to IP protection
- We need some low cost 5G end to end Testbed (UE + RAN + CORE + SMO) for students to get hands onto 5G
- Initiative started with UCT in 2023
- Mission: Build a catalogue of useful 5G toolkits, plus useful blueprints plus tutorials to get students started
- Traget is to evolve from 5G towards 6G in the future

![](_page_56_Picture_9.jpeg)

### Open6GNet.org Initiative – State of Play

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_2.jpeg)

- 5G-Beyond testbed infrastructure and toolkits' collection for teaching and research:
  - students at TUB
  - visiting students
  - researchers
- Workshops for students to deploy 5G private networks setups using open source tools guided by experienced researchers

![](_page_57_Picture_8.jpeg)

![](_page_57_Picture_9.jpeg)

• Fostering open source adoption, dedicated events to meet open source projects' representatives

![](_page_57_Picture_11.jpeg)

### Open6GNet.org Initiative – How to contribute

![](_page_58_Picture_1.jpeg)

- Prepare a concise good description of the 5G setup and of the outcomes (proposal)
  - hardware used
  - architectural design picture
  - configuration of the deployed software tools
  - report on performances/outcomes achieved with the testbed experiments
- Submit the proposal for review
- More on <u>www.open6gnet.org</u>
- Contact: Ramona Modroiu, elena-ramona.modroiu@tu-berlin.de

![](_page_58_Picture_10.jpeg)

![](_page_59_Picture_0.jpeg)

![](_page_60_Picture_0.jpeg)