

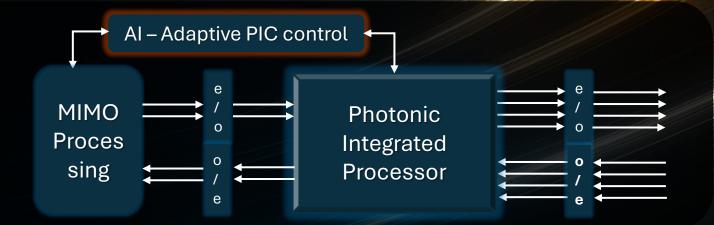
Stellar Phronesis

AI-Photonics for High-Throughput, Low-Power Wireless Systems

Mission & Technology

Our Purpose:

"High-Throughput, Low-Power Wireless Systems"


Novel photonic integrated processor architecture

Al-driven adaptive processing

Real-time
environmental
self-correction,
adaptive MIMO,
dynamic bandwidth
allocation.

Core Competencies

Antenna Arrays & Fiber-Wireless Systems

Photonic Integrated Circuits

Al-Driven Signal Processing Algorithms

Fiber Wireless Concept and System

<u>Developments</u>

Ronis Maximidis
PhD Antenna arrays. PostDoc:
Photonic FiWi and MIMO FSO

Christos Mourelatos
Al Optimization/Processing
Deep-Tech Commercialization

Wireless Communication Technologies and Signal Processing HORIZON-JU-SNS-2025-01-STREAM-B-02

Expected Outcome: Development of algorithms for massive MIMO systems for increased channel capacity and coverage improvements under difficult propagation conditions.

Scope 1: Extreme exploitation of MIMO technologies such as MIMO algorithms, exploitation of extremely large arrays, massive MIMO evolutions, this possibly including massive MIMO technology for enhanced indoor coverage,

Scope2: ... novel beam management schemes in massive MIMO settings leveraging on hybrid analog-digital front-end architectures ...

Objective: Develop and validate photonic processors for integration into 6G networks, enhancing performance, channel capacity and energy efficiency.

Key Activities:

- Development of compact, low-power MIMO photonic processors at mmwave/THz frequencies for channel capacity improvement.
- Implementation of AI algorithms for real-time adaptive signal processing f for coverage improvements under difficult propagation conditions.

Higher Speed Optical Access Networks and future end-to-end Packet Optical Network Architecture in 6G HORIZON-JU-SNS-2025-01-STREAM-B-03-02

Expected Outcome: Integration of photonics and wireless systems including sensing.

GESNS

Scope 1: Integration of wireless and optical and optical sensing as support for services

Scope2: Impact of photonic systems in 6G on energy consumption / sustainability

Objective: Develop and validate photonic processors for integration into 6G networks, enhancing performance and energy efficiency support joint sensing and communication.

Key Activities:

- Development of compact, low-power photonic processors for joint sub-THz and FSO links.
- Implementation of AI algorithms for real-time adaptive processor calibration and beamforming.

Schedule a Meeting

For more information about our technology, contact us:

Antennas and Photonic Components:
Ronis Maximidis <u>rmaximidis@stellarphronesis.com</u>

Al integration and strategy:
Mourelatos Christos <u>cmourelatos@stellarphronesis.com</u>

For general inquiries, please send to info@stellarphronesis.com Or you can meet the team in person at our Thessaloniki, Greece office.

