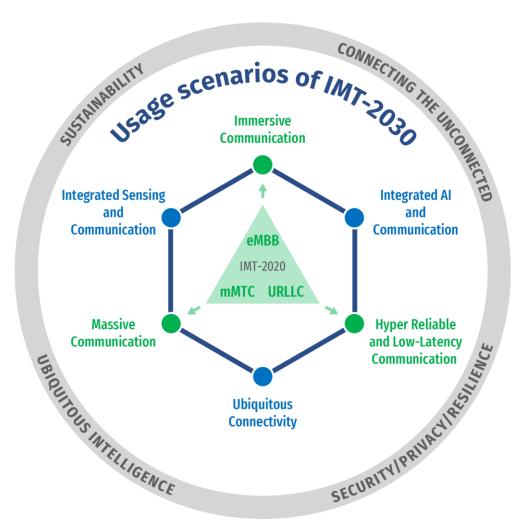
Speaker

Hanwen Cao Wireless System Innovation Lab Lead Huawei Munich Research Center

Outlines

ISAC brief introduction


• 5G-ACIA's work on ISAC use cases

Use case demos

Takeaways

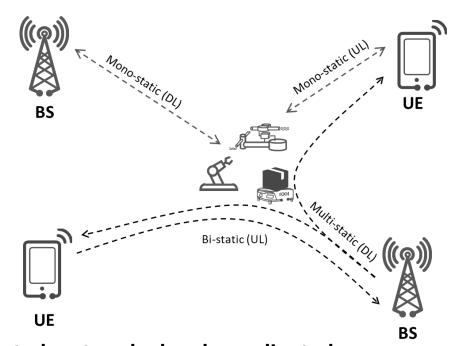
Cellular Network Evolution: IMT-2030 Framework

New Usage Scenarios

- Integrated AI and Communication
- Ubiquitous Connectivity
- Integrated Sensing and Communication (ISAC)

Recommendation ITU-R M.2160-0

ISAC Technologies Overview



Same cellular network infrastructure providing both wireless communication and sensing services.

- Unified network infrastructure
- Unified spectrum resource
- Unified standard framework

Sensing applications:

Object/human detection and tracking, gesture sensing, vital sign sensing, 2D/3D environment reconstruction, imaging, material sensing, Micro-Doppler sensing, Object size measurement, Sensing for improving communication/localization, Integration of non-3GPP sensors

Three Levels of integrations:

- Application Level: Sensing and communication systems are separate, exchanging external sensing data.
- Spectrum Level: Signals are multiplexed in time, frequency, and space, sharing spectrum and some hardware.
- **Full Integration**: Systems fully integrate, sharing information across layers, modules, and nodes.

Integrated, networked and coordinated

- Multi-static, bi-static, mono-static & multi-view: enhanced coverage, diversity and reliability
- Multi-modality: enhanced capabilities by non-3GPP sensing
- Highly coordinated: interference free

ISAC – State of Play

- Projects: SNS Hexa-X I/II, TIMES, 6G-DISAC, BMBF COMSENS, etc.
- Orgs: one6G, IMT-2030 6G PG, IEEE ComSoc, etc.

ETSI ISG ISAC

- Use cases
- Channel modelling
- System/RAN architectures
- ..

ETSI ISG THZ

Numerous ISAC use cases defined in the report ETSI GR THz 001

3GPP

- Rel-19: TR22.837: 32 use cases; TS22.137: service requirements; TS38.901 channel modelling
- Rel-20: TR22.870: 20 use cases; TR23.700-14 system aspect study; TR 38.765 ISAC for NR; SA3 security aspects

IEEE

- 802.11bf WiFi Sensing task group: specification approval is expected in June 2025
- IEEE ComSoc Emerging Technology Initiative ISAC

5G-ACIA's focus on ISAC

• A work item on ISAC use cases and requirements was started September 2023.

Great supports and contributions from AI-Link, Bosch,
 CMCC, Ericsson, Fraunhofer, Infineon, ITRI, Nokia, Orange,
 Rockwell, Siemens, Trumpf and Huawei (Rapporteur), etc.

The whitepaper is published in January 2025

 Liaison interactions with ETSI ISG ISAC, ETSI ISG Terahertz and 3GPP

https://5g-acia.org/whitepapers/use-cases-and-requirements-for-integrated-sensing-and-communication-isac-in-connected-industries-and-automation-2/

Benefits of ISAC for Industrial Automation

Unified Infrastructure

The unified cellular infrastructure for both wireless communication and sensing services. A direct benefit for cost optimization.

High Sensing Performance

- Comprehensive solution including multi-node, multistatic and multimodality sensing
- The utilization of wide-range of RF spectrum for sensing with interference coordinated

Suitable in Harsh Environment

RF based technologies are well-suited for environments with dust, heat, humidity, and lowlight condition, etc.

High Data Security

An unified and trusted environment for collecting and transferring sensing data.

Privacy Protection

Unlike cameras, microphones, and wearable devices, RF sensing minimizes privacy concerns.

ISAC Applications for Industries

Detection and Tracking of Ground/Aerial Vehicles and Humans

- Traffic monitoring
- Intruder detection

Tracking and Size Measurement of Goods

- Goods sorting
- Inventory monitoring

Human-Machine and Machine-Machine Collaboration

- Gesture / posture sensing
- Collision avoidance

Safety and Health at Work

- Vital signs sensing
- Fall detection

Environmental Mapping

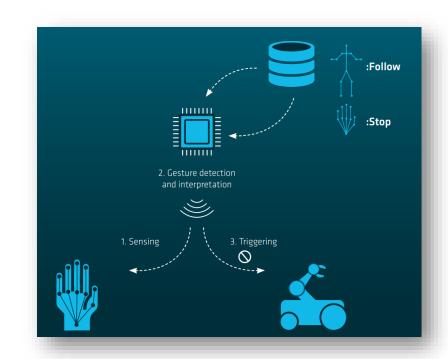
- NLOS mapping
- Radio map for improving communication

Predictive Maintenance

- Machinery condition monitoring
- Pipe condition monitoring
- · ...

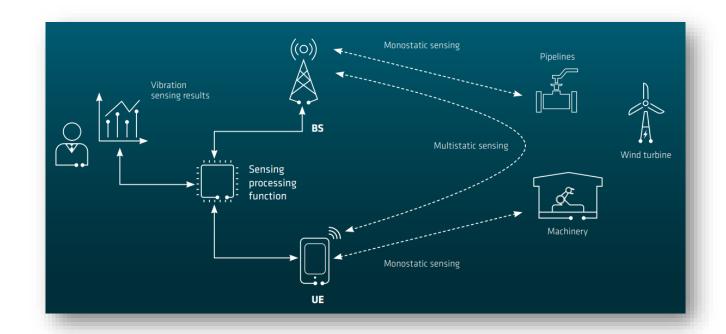
Quality Inspection

- Internal defect detection
- Coating and painting measurement

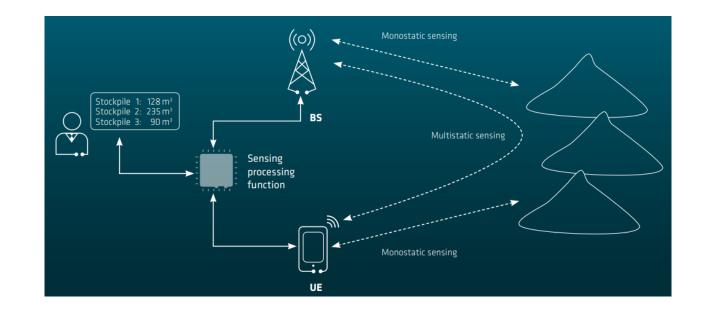

Sensing for Improving Localization and Communication

- Integrating passive sensing and active localization
- Communication enhancement using sensing information

Use Case 1: Gesture Recognition in Industrial Environment

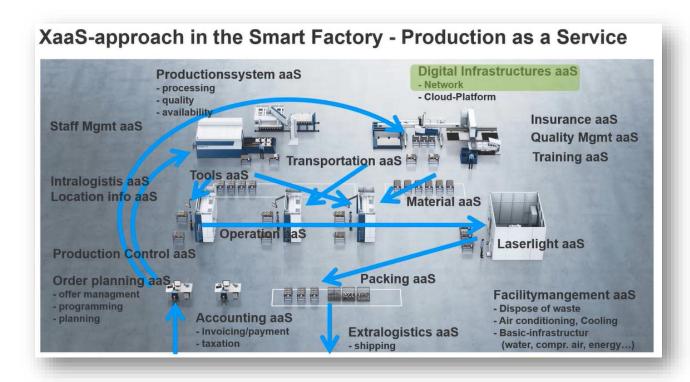

- Gesture recognition allows workers to interact with machines in a touchless manner, enhancing safety and efficiency in environments where physical contact may be restricted or cumbersome. It provides intuitive control for operations, improving overall system performance.
- **Challenges:** Gloves, noise, and safety constraints make touch or voice interfaces impractical in industrial settings, requiring precise gesture recognition.
- ISAC Functionalities: ISAC leverages cellular networks, combining RF signals and other sensors to enable accurate gesture recognition.

Use Case 2: Vibration Monitoring in Industrial Environment


- Vibration monitoring is key to maintaining machinery, pipelines, and buildings, preventing damage and improving operational efficiency.
- Challenges: Conventional vibration detection methods often require direct contact with equipment, which is impractical in harsh, hard-to-reach, or hazardous environments.
- ISAC Functionalities: ISAC utilizes the Doppler frequency processing of RF signals enabling vibration detection at longer distance and through non-conductive materials.

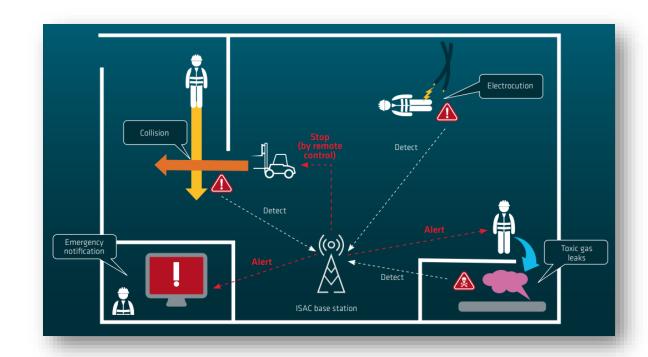
Use Case 3: Stockpile Monitoring

- Stockpile monitoring is crucial for efficient inventory management, safety, and optimizing operations, ensuring materials are available and preventing shortages or overstocking.
- Challenges: Conventional stockpile monitoring technologies struggle in harsh conditions such as dust, smoke, and low-light environments, reducing their accuracy and effectiveness.
- ISAC Functionalities: ISAC continuously monitors stockpile conditions using RF signals, enabling precise measurement of height and volume even in challenging environments.


Use Case 4: ISAC for Optimizing the Flexible Production Flows

 "XaaS" (Production as a Service) model integrates modular production services like logistics and staff management through a digital infrastructure.

ISAC Functions:


- ISAC technology continuously monitors the movements of humans, carts, and AGVs, enhancing safety and efficiency.
- Prevents accidents by detecting proximity risks and triggering alarms or machinery shutdowns.
- Identifies bottlenecks and inefficiencies, optimizing production flows and reducing downtime.
- Increases productivity, shortens lead times, and improves resource utilization.

Use Case 5: ISAC for Hazard Prevention in Industrial Environments

- Ensuring the safety of workers is crucial in industrial environments to prevent potentially fatal accidents and property damage, requiring continuous improvement in safety measures.
- Challenges: Conventional hazard detection methods are limited in their ability to monitor complex environments, especially in cases of falls, collisions, or toxic gas leaks, and often struggle with low visibility or difficult-to-reach areas.
- ISAC Functionalities: ISAC uses radio sensing and other integrated sensors for providing alerts for potential hazards such as falls, collisions, or hazardous environmental conditions. It can also predict dangerous scenarios, ensuring timely intervention to prevent accidents.

5G-ACIA ISAC Use Cases Reflected in the New Use Cases of 3GPP & ETSI

Use Case 1: Gesture Recognition in Industrial Environment

ETSI GR ISC 001: 5.1 Use case on human motion recognition

3GPP TR22.870: 7.16 Use case on enabling non-3GPP wireless sensing

Use Case 2: Vibration Monitoring in Industrial Environment

ETSI GR ISC 001: 5.13 Use case on micro-deformation sensing

3GPP TR22.870: 7.14 Use case of infrastructure collapse monitoring

Use Case 3: Stockpile Monitoring

ETSI GR ISC 001: 5.4 Use case for high-resolution topographical maps

3GPP TR22.870: 7.5 Use case on environment object reconstruction

Use Case 4: ISAC for Optimizing the Flexible Production Flows

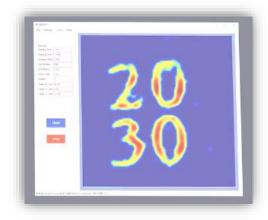
ETSI GR ISC 001: 5.12 Use case on real time cyber-physical systems in industrial worksites

3GPP TR22.870: 7.13 Use case on collaborative robots using digital twinning (also in ETSI GR ISC 001: 5.10)

Use Case 5: ISAC for Hazard Prevention in Industrial Environments

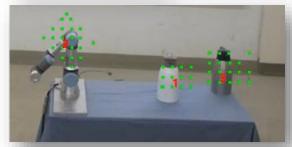

ETSI GR ISC 001: 5.6 Use case on real-time monitoring of health hazard and disaster risk

ETSI GR ISC 001: 5.8 Use case for outdoor healthcare sensing and monitoring

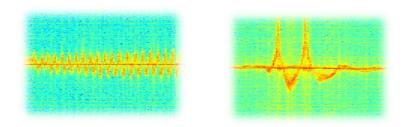

3GPP TR22.870: 7.7 Use case on intelligence leveraging nearby entities for real-time awareness

ISAC Demo - High resolution penetrative imaging

- High mmWave frequency band
- Virtual antenna aperture creation with robotic motion
- 3GPP compatible PHY with OFDM/QAM


ISAC Demo – Point cloud for object and posture detection

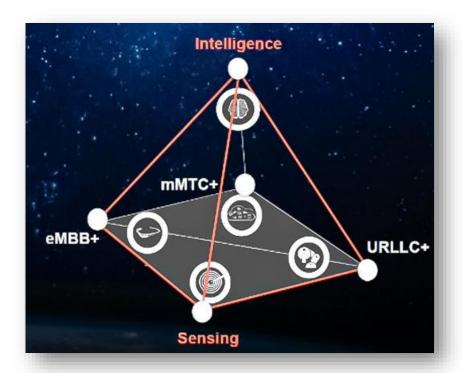
- cmWave (FR3) frequency band
- Massive MIMO System
- 3GPP compatible PHY with OFDM/QAM


Target	R(m)	H(*)	V(*)
	Detection Value	Detection Value	Detection Value
1	3.354	11.183	-4.266
2	3.354	0.431	-0.673
3	3.660	15.728	-4.270

ISAC Demo – High Resolution Imaging

- High mmWave frequency band
- Doppler-Time Signal Processing
- 3GPP compatible PHY with OFDM/QAM

Doppler-time features of motions


Key Takeaways

- ISAC represents a pivotal emerging capability of Beyond 5G and in particular 6G cellular networks, with substantial ongoing efforts in research, standardization and real-world trials.
- For industrial automation, ISAC holds considerable potential to advance efficiency, quality, flexibility, safety, information security, and cost-effectiveness, etc.
- And when combined with AI, the integration of sensing and communication will unlock even greater transformative potential.

"The whole is greater than the sum of its parts."

- Aristotle

Web Seminar Series 2025

5GACIA

Thank you for your attention!

