FESNS

Session 2

ISAC/JCAS Research & Innovation, Validation and Challenges

Moderator: Kostas Trichias (6G-IA)

SNS Technology Board Chairman

SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS 10 October 2025

Validation Efforts & Achievements in SNS JU

- More than 120 Tests / Trials taking place in more than 25 EU countries
- Southern-European countries are leading in terms of tests/trials
- Good spread of test/trial sites across the EU
- 15 recent Key Achievements from 9 SNS Projects concern ISAC/JCAS

Test/Trials per country - Total Greece 15 Key Achievements Unique Projects Germany France Belgium **United Kingdom** iSEE-6G - Key Achievement 3 Poland **TIMES - Key Achievement 2** Opti-6G - Key Achievement 1 Hexa-X-II - Key Achievement 6 Hexa-X-II - Key Achievement 5 Netherlands ADVANCED PHY-LAYER DESIGN FOR THZ 5G OWC COMMUNICATION NETWORK **UAV-ASSISTED COMMUNICATIONS: FROM** AI-BASED AIR INTERFACE ARCHITECTURE FRAMEWORK FOR Romania INTEGRATED SENSING AND **ARCHITECTURE AERIAL CORRIDORS TO ISAC NOVEL 6G SERVICES** Finland COMMUNICATION (ISAC) TECHNOLOGY Switzerland Sweden South Korea 6G-SENSES - Key Achievement 3 Hexa-X-II - Key Achievement 3 **BeGREEN - Key Achievement 2** 6G-SENSES - Key Achievement 2 6G-SENSES - Key Achievement 1 Portugal Ireland **6G END-TO-END ARCHITECTURE** BEGREEN ISAC AND RIS OPTICAL TRANSPORT NETWORK **6G-SENSES NETWORK ARCHITECTURE 6G-SENSES ECOSYSTEM VIEW** INTEROPERABILITY OPTIMIZATION SUPPORTING INTEGRATED SENSING AND Slovenia COMMUNICATION SERVICES Luxembourd 6G-DISAC - Key Achievement 1 6G-MUSICAL - Key Achievement 3 6G-EWOC - Key Achievement 1 6G-DISAC - Key Achievement 3 6G-DISAC - Key Achievement 2 Cyprus Bulgaria DISTRIBUTED BEAMFORMING PIC PLATFORM ENHANCEMENT IN METHODS FOR DISTRIBUTED ISAC INTELLIGENT MANAGEMENT & DISTRIBUTED ISAC ARCHITECTURE FRAMEWORK FOR CELL-FREE ISAC SUPPORT FOR OWC BEAMFORMER OPERATION ORCHESTRATION FOR SCALABLE ISAC SYSTEMS WITHOUT MECHANICALLY MOVING PARTS Number of Tests/Trials per country by Call 2+3 projects

10/10/2025

GESNS

FISNS

ISAC/JCAS Research & Innovation, Validation and Challenges

Presenter: Dr Sebastian Robitzsch, InterDigital Europe Ltd

SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS

10 October 2025

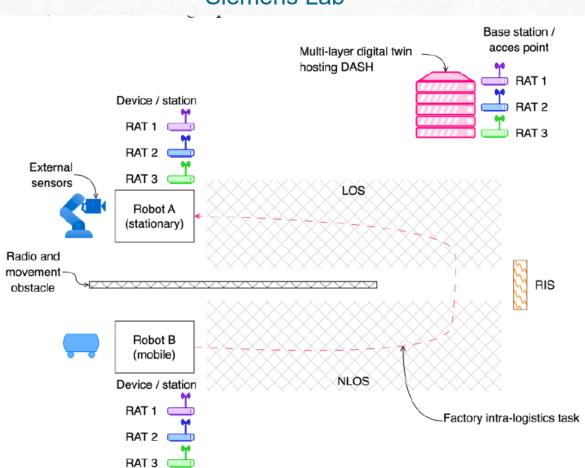
Multi-X Overview

Research and innovation

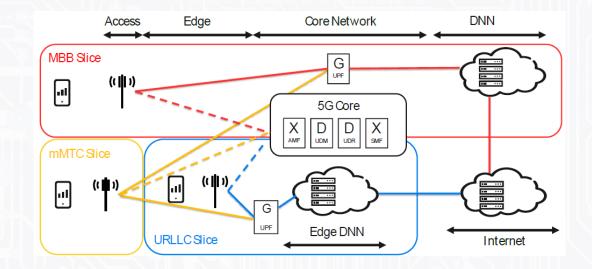
- Aims to revolutionise the 3GPP Radio Access Network (RAN) design and operation by developing a pioneering MultiX fusion Perceptive 6G-RAN system (MP6R)
- Support an integrated multisensor, multi-static, multi-band, and multi-technology paradigm to enable multi-sensorial perception
- Address the 6G sustainability goals (where applicable)
- Explore Al's full potential across all layers of the MP6R and develop an energy efficient Al architecture for adaptive ISAC transmitter/receiver and distributed learning with a novel low power Al engine design.

Validation

- MultiX has two proof of concepting sites: Siemens lab, 5TONIC


10/10/2025

Test Sites in MultiX



Siemens Lab

5TONIC

ISAC/JCAS Research & Innovation, Validation and Challenges

Integrated Sensing, Energy and Communication for 6G
Networks

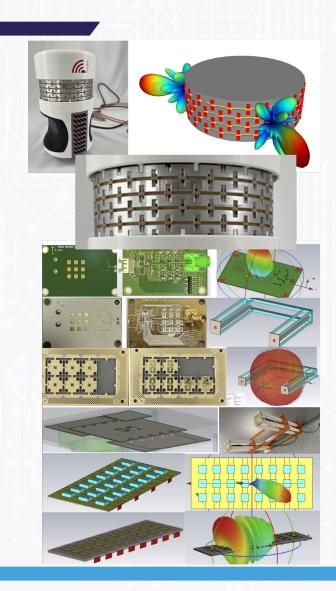
Presenter: Prof. Konstantinos Maliatsos, University of the Aegean, University of Piraeus, GR

SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS

10 October 2025

iSEE-6G Integrated Sensing, Energy and Communication for 6G Networks

ISAC - JCCSP Research & Innovation, Validation and Challenges



ISAC/UAV Radio Channel Measurement and Characterization

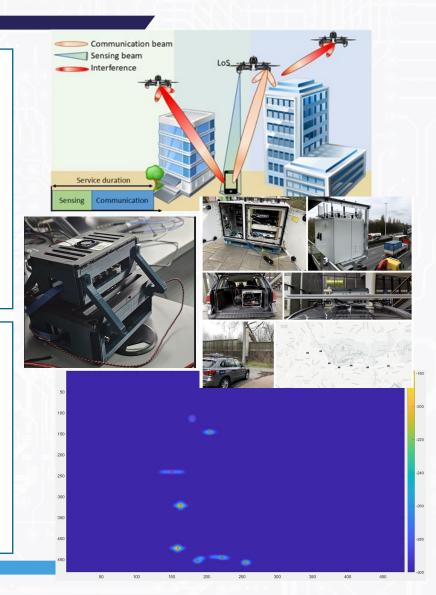
- Investigation of well-accepted radio channels and extension for ISACsupport
- Development of a RIMAX-based channel sounding and characterization process.
- Development and integration of a channel sounder.
- Performance of measurement campaigns
- ISAC channel modelling

Design and development of

- Antennas for characterization of the UA/ISAC channel.
- Antennas for ISAC operation (for discovery and tracking mode) at FR2 (UAV + ground)
- iSEE-6G Radio Unit with extra beamforming capabilities
- A RIS for FR2 communications and sensing.

iSEE-6G Integrated Sensing, Energy and Communication for 6G Networks

ISAC - JCCSP Research & Innovation, Validation and Challenges



UAV-Assisted Communications: From Aerial Corridors to ISAC Technology

- Performance investigations
- Corridor-assisted UAV-enabled communications
- Joint sensing and communication in UAV-assisted networks.
- Challenges:
 - Increased probability for collisions, air traffic disruption
 - Resource constraints exist in terms of size, weight, and power
 - Spectrum congestion and real-time sensing and fast decision-making.

PHY Design and Experimentation for JCCSP

- Design of an OFDM-based PHY frame (with 5G backwards compatibility) with JCCSP support.
- Integration of the iSEE-6G antenna achievements.
- Development of ISAC algorithms for the specific setup.
- Integration of the iSEE-6G transceivers towards the project PoCs.

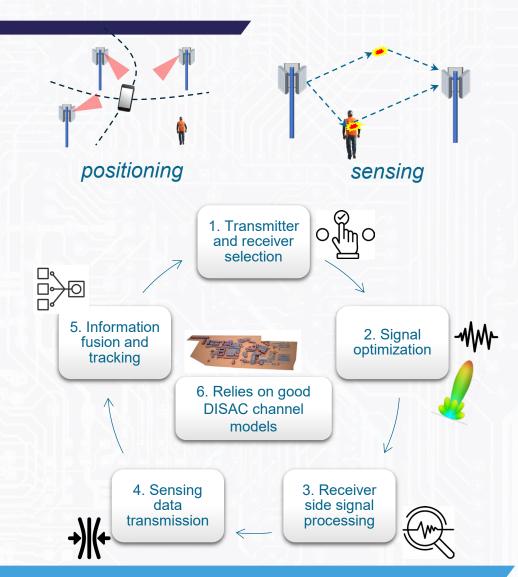
GGSNS IA

6G-DISAC: Distributed Intelligent Sensing and Communications for 6G

Physical-layer implications and enablers of ISAC

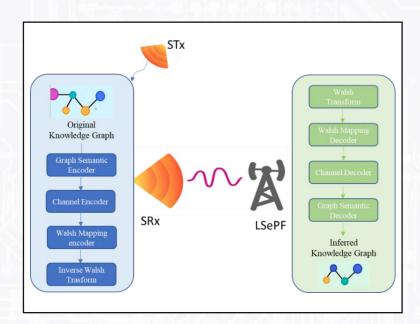
Presenter: Hui Chen (Chalmers University of Technology, Sweden)

SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS

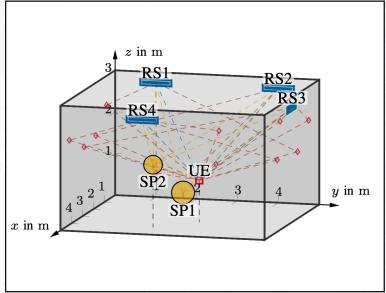

10 October 2025

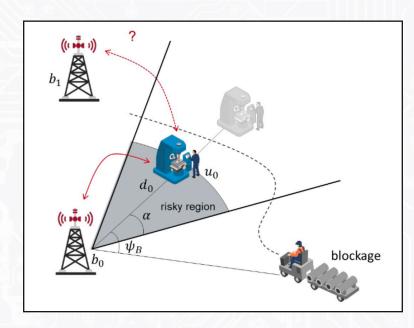
Physical Layer Solutions

- Transmitter side
 - During sensing: signal design in time, frequency and space
 - After sensing: representation of sensing data
- Receiver side
 - Detection and tracking of objects/targets
 - Positioning and tracking of connected users
- Sensing-aided communication
 - Sensing-aided dynamic handover management
 - Sensing-aided full-duplex communication.
 - Sensing-aided beamforming and beam tracking.



Case Studies




- Task 1: Physical Layer Optimisation and Adaptive Waveform Shaping
- Task 2: Sensing, Localisation, and Tracking of Active and Passive Objects
- Task 3: Sensing-Aided Communications

Case Study 1: Semantic-aware Communication of Sensing Data

Case Study 2: Joint Localization, Synchronization and Mapping via Phase-Coherent Distributed Arrays

Case Study 3: Sensing-/Location-aided Dynamic Handover Management

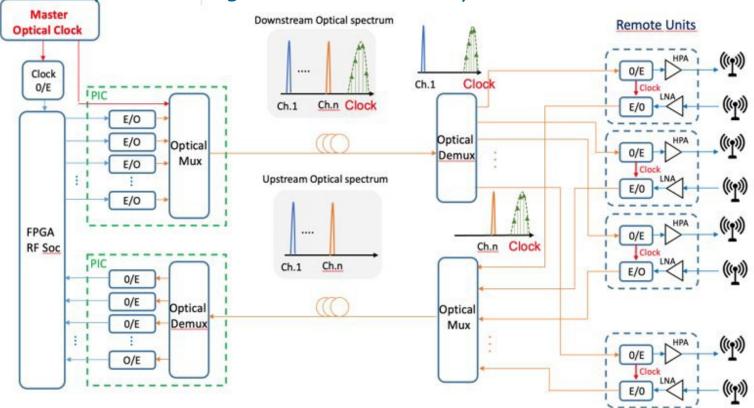
10/10/2025

FGSNS

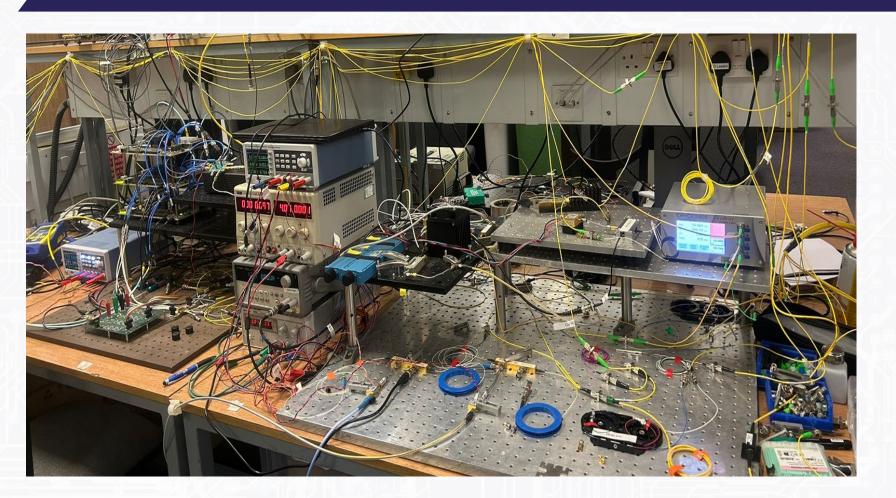
ISAC/JCAS Research & Innovation, Validation and Challenges

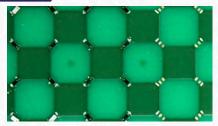
Presenter: Izzat Darwazeh-University College London

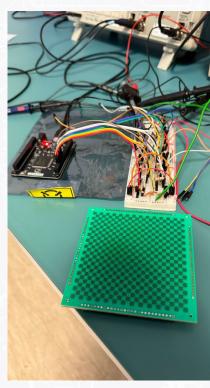
SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS 10 October 2025


New Synchronisation architecture

Requires for cm level accuracy and no GNSS Stable sources, optical and wireless,


phase caching for cm level accuracy and no GNSS Downstream Optical spectrum



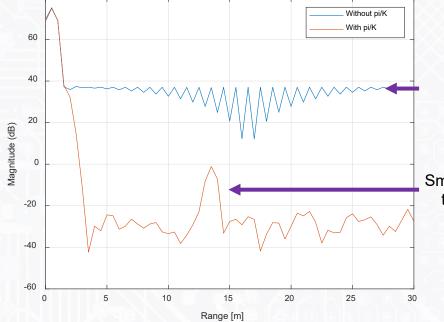

World first: Optical RF test bed with highly stable clock and synchronization and Antennas/RIS

GGSNS IA

6G-REFERENCE: OFDM Radar waveform with improved angular resolution

Presenter: Marc Bauduin

SNS JU /6G-IA & 5G-ACIA Highlights, Lessons learnt and next steps on ISAC/JCAS 10 October 2025

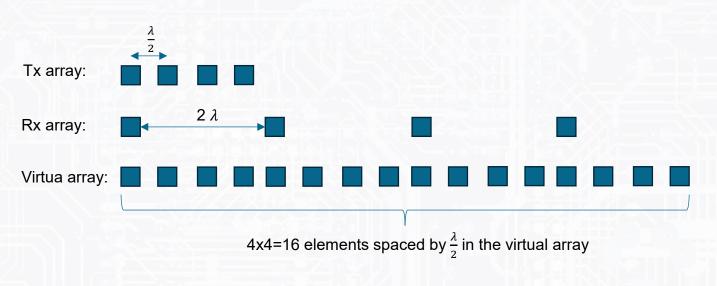

Radar waveform is optimized to improve sensitivity

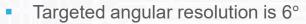
Proposed ICAS system:

- Same front-end for communication and sensing
- Sensing and communication are done in different time slots

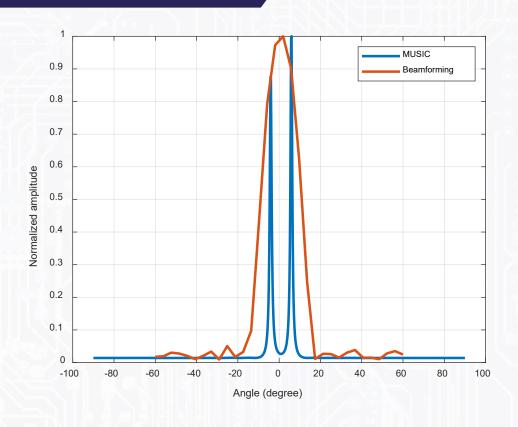
Reduced sensitivity due to IQ imbalance

Small obstacle detected with the optimized waveform


- OFDM waveforms are compatible with sensing
 - $\frac{\pi}{\kappa}$ phase rotation technique can be used to remove artifacts due to IQ imbalance
 - OFDM radar waveform can achieve low PAPR (<2dB)


Bauduin M. and Bourdoux A., (2022), "Pi/K Phase Modulation for MIMO Digitally Modulated Radars", IEEE Radar Conference.

Angular resolution limited by aperture size



Super resolution algorithm combined with spatial smoothing techniques needed to improve angular separation with smaller antennas array

Pillai S.U. and Kwon B.H. (1989), "Forward/backward spatial smoothing techniques for coherent signal identification", IEEE Transactions on Acoustics, Speech, and Signal Processing.

Roy R., Paulraj A. and Kailath T. (1987), "Comparative performance of ESPRIT and MUSIC for direction-of-arrival estimation", IEEE ICASSP

THANK YOU FOR YOUR ATTENTION

SUPPORTED BY

