FESNS

Open Calls – Results 6G-SANDBOX Project

SUMMARY OF EXPERIMENTS AND IMPLEMENTATIONS

Results Achieved by 3rd Parties involved in 6G SNS Projects through the mechanism of Cascading Funding – Open Calls

SUMMARY OF EXPERIMENTS AND IMPLEMENTATIONS

Results Achieved by 3rd Parties involved in 6G SNS Projects through the mechanism of Cascading Funding – Open Calls

6G-SANDBOX PROJECT

Supporting Architectural and technological Network evolutions through an intelligent, secureD and twinning enaBled Open eXperimentation facility

OVERVIEW

The 6G-SANDBOX project - Supporting Architectural and technological Network evolutions through an intelligent, secureD and twinning enaBled Open eXperimentation facility - brings a complete and modular facility for the European experimentation ecosystem, which is expected to support for the next decade technology and research validation processes needed in the pathway towards 6G. The target is at technologies and research advances, that span over the entire service provisioning chain, and refer to user/data, control and management planes. In this direction, 6G-SANDBOX introduces the concept of Trial Networks, which refers to fully configurable, manageable and controlled end-to-end networks, composed of both digital and physical nodes.

The 6G-SANDBOX Trial Networks incorporate infrastructures distributed in EU and offer to third parties automated experimentation capabilities through a rich and extensible toolbox. Meant to create tangible and long-term impact, the 6G KPIs and KVIs that will be quantified with the facility, will be released to any interested party; while the set of developments and APIs that will be produced, will feed an open repository as an initial step to move the contributions and the lessons learned beyond the project boarders and define a European 6G library.

The 6G-SANDBOX Testsites

Athens, Greece - The Athens platform is an advanced large-scale experimental facility for 5G SA networks located in two different locations in Athens, namely the Cosmote/OTE Academy campus and the NCSR Demokritos campus, which are interconnected with a dedicated 10G dark fiber. The network at the NCSR Demokritos campus includes two radio access networks connected to different 5G cores, enabling research in inter-PLMN handover and roaming scenarios. The platform also features a satellite/NTN-emulator that allows for multi-operator and multi-access scenarios with low cost and agility. ATSSS enables efficient use of multiple RATs in a multi-connectivity scenario, and MPTCP is used to combine multiple network paths in a single TCP connection, potentially improving QoS for users with hybrid access.

Berlin, Germany - The Berlin Platform is located at Fraunhofer FOKUS premises in Berlin, Germany. It provides the Technology and services to develop and run experiments using the latest 5G and 6G technologies. The Berlin Site is being enhanced with all the software components developed in 6G-SANDBOX to create the trial networks and network digital twins, including integration of 6G components at the physical infrastructure layer that are related to: (i) Open RAN radio technology, including RU/DU splits, (ii) Extension of the testbed with additional nomadic nodes for field tests, and (iii) Extension by developing a platform for edge-based data acquisition, exchange, and analysis.

Malaga, Spain - Victoria Network (Malaga Platform) includes a wide variety of mobile networks and other technologies situated across various physical locations, but with a clear centralized control post in the Ada Byron building on the University of Malaga (UMA) campus. Victoria Network is being enhanced with all the software components developed in 6G-SANDBOX to create the trial networks and extend current network digital twins, including integration of 6G components at the physical infrastructure layer that are related to: University campus RAN extension and new RAN locations, Reconfigurable Intelligence Surfaces, More disaggregated RAN solutions (O-RAN) with the related SW and HW emulation components of Keysight, Fixed/RAN and NTN with EDGE/MEC, and use of OneWeb satellite mobile backhaul, in addition to the existing Starlink, Improved Deterministic networking using P4 language with Intel Tofino 2 switches, and Features to support extended reality and haptic communications.

Oulu, Finland - CWC research unit at Oulu has a campus wide 5G Test Network (5GTN) with small cell, macro-cell and distributed antenna based cellular network to be complemented by NFV based EPC and 5G backhauling solution (http://5gtn.fi/). 5GTN is a full-scale 5G test network with its own SIM cards, and it supports using 5G devices, higher frequency bands, cognitive management functionalities, and system testing tools for new solutions. The Oulu Site is being enhanced with all the software components developed in 6G-SANDBOX to create the trial networks and network digital twins, including integration of 6G components at the physical infrastructure layer that are related to: Enhanced autonomous programmability features of the 5GTN, Incorporated within 5GTN an AI-based closed loop that can protect the network against Application-Layer (D)DoS Attack and protect the edge cloud against economic denial of sustainability attacks, and APIs exposure to some of its cloud nodes where external users can deploy their services to be delivered as an edge cloud service and tested over the 5GTN.

6G-SANDBOX Open Calls

In order to further enrich the capabilities of its overall experimental infrastructure, upgrade and extend specific experimental features of ist four test sites, and finally open its infrastructure for wide experimentation and gathering experience from concrete tests and trials, the 6G-SANDBOX involved the 3rd parties in these activities through organization of three competitive open calls, dedicated to the following main activities:

- Establishing new infrastructures and functionalities (extensions): Enlarge and make the 6G-SANDBOX experimental infrastructure ready for advanced experimentation, where the new 6G features and functionalities should be integrated into the 6G-SANDBOX infrastructure.
- Innovative experiments: To initiate first funded innovative experiments on the 6G-SANDBOX infrastructure

In the scope of the 6G-SANDBOX Open Calls, all together 31 Open Call / 3rd Parties projects have been implemented (last ones are being completed); 9 related to establishing new infrastructures and functionalities and 22 experiments.

OPEN CALLS PROJECTS: EXTENSIONS

Establishing new infrastructures and functionalities in 6G-SANDBOX

ARROW

OC Project Title	Al-powered Digital Security Processes over Cloud-native 5G and Beyond Networks
Benefiaciary(s)/Country	 Centre of Research and Technology Hellas – CERTH Information Technologies Institute – ITI Visual analytics Lab – VALab: https://valab.iti.gr/
Project Description	An end-to-end security architecture in 5G and B5G that incorporates Artificial Intelligence (AI) approaches is required to autonomously identify and respond to possible attacks based on network abnormalities rather than traditional authentication and authorization methods. ARROW targets systematic experiments with an SDN-based platform that provides AI-powered Digital Security mechanisms to generate, detect, and prevent attacks over 5G and B5G networks. The ARROW solution includes: (i) end-to-end AI-enabled threat detection and prevention techniques; and (ii) attack configuration tools for AI-powered attack generation on multiple threat vectors. The capabilities of the 5G cybersecurity platform are enhanced through experimentation in 6G-SANDBOX facilities (Malaga platform) in terms of extended experiments both from the user side and telecommunication provider side. The experiments involve various attacks and 5G protocols, while AI-enabled mechanisms are examined to generate the attacks and enable AI-based penetration testing of the facilities. A detailed data collection procedure is adopted for every conducted experiment to formulate tailored datasets that can further accelerate research on 5G/6G cybersecurity and derive updated AI models tailored to testbed intrusion detection capabilities. A validation procedure is performed to enable the ARROW Cybersecurity Module to be added to 6G-SANDBOX infrastructure for further experimentation.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga
Implementation timeframe	September 2023 – March 2024
Results & Impact	To thoroughly evaluate the proposed method's effectiveness within the ARROW project framework, extensive experimentation was conducted utilizing AI models trained and tested on the captured traffic data. This approach allowed the performance of the models in a controlled environment and their real-time applicability to be established.

ANALYSAT

OC Project Title	AI-driveN multi-link bAckhauL management through network data analyticS and localization
Benefiaciary(s)/Country	NextworksRomARSCNIT
Project Description	ANALYSAT delivers a technical solution for the 6G-SANDBOX facilities through the implementation of three new functionalities: Network Data Analytics Function (NWDAF) capability, Location Management Function (LMF) capability, multi-link backhaul management in hybrid terrestrial-satellite networks.
Vertical	n/a (networking related experiment/implementation)
Testbed	Demokritos, Athens
Implementation timeframe	September 2023 – March 2024
Results & Impact	ANALYSAT implemented three new functionalities (NWDAF, location information capability, multi-link backhaul management) by integrating and enhancing results from previous H2020 and ESA ARTES projects to extend the capabilities of 6G-SANDBOX testbeds. Moreover, ANALYSAT demonstrated how the new proposed functionalities can jointly support the introduction of novel management features for network automation in satellite enabled mobile networks. This is achieved through the implementation of a use case application that exploits the information data from the new Network Data Analytics exposed by the mobile network to automatically select between satellite and terrestrial backhaul link technologies based on aggregated mobility and traffic load analytics data as well as on the basis of predictions built via ML techniques. Integrating the solutions proposed in ANALYSAT, 6G-SANDBOX experimenters will be able to retrieve network KPIs and information of UEs' localization in Athens and Malaga testbeds, which can be used to develop new network-aware applications or service management solutions, possibly based on data analytics and ML techniques. Moreover, the possibility to programme dynamically the multi-link transport network will allow to experiment with new end-to-end resource allocation schemas, placement algorithms, and strategies for network planning and automated optimization. On top of the new functionalities, new platform capabilities and extensions can be developed by technology providers to improve network operation, management, and performance, in the target 6G-SANDBOX facilities, in support of 6G service applications. The solutions delivered in ANALYSAT derive from existing software assets already demonstrated in relevant environments (around TRL 6). They have been extended and adapted for integration in the 6G-SANDBOX NCSRD testbed during the project, making them ready to be used and exploited by 3 rd party experimenters.

6G-LoRaGRAN

OC Project Title	Integration of the University of Granada's LoRaWAN network in the 6G SANDBOX connectivity infrastructure
Benefiaciary(s)/Country	Universidad de Granada, SPain
Project Description	The 6G-LoRaGRAN project was presented by the WiMuNet research group (code TIC-235 of the Scientific Information System of Andalusia) of the University of Granada (UGR), Spain. The main functionality that the project adds to the current 6G-SANDBOX infrastructure is the integration of the University of Granada's LoRaWAN network in the 6G-SANDBOX connectivity infrastructure. This integration will enable researchers to conduct remote experimentation within the realm of LoRaWAN. The UGR network consists of an operational network (managed by CSIRC) and a laboratory network (administered by the WiMuNet research group). To facilitate its use, our LoRaWAN testbed will be integrated with the 6G-SANDBOX sites, aiming to transmit LoRaWAN traffic through the 5G core networks of the 6G-SANDBOX sites. This integration allows for remote LoRaWAN experimentation using UGR's LoRaWAN motes and infrastructure. Additionally, a network slicing solution will be implemented in the LoRaWAN radio access network, enabling research on radio resource allocation algorithms to efficiently share resources among motes belonging to different verticals.
Vertical	n/a (networking related experiment/implementation)
Testbed	Fraunhofer FOKUS, Germany
Implementation timeframe	September 2023 – March 2024
Results & Impact	The 6G-LoRaGRAN project serves as a proof-of-concept illustrating how a mobile network operator could integrate a LoRaWAN network into its own 5G network infrastructure. LoRaWAN, a prominent technology for massive IoT, operates within unlicensed frequency bands, allowing private companies to leverage it for their deployments. By integrating LoRaWAN, MNOs can offer comprehensive solutions that encompass LoRaWAN, NB-IoT, and other cellular-based technologies, each tailored to different use cases. This integrated approach is poised to attract various verticals. Consequently, we anticipate that this project will facilitate knowledge transfer not only to MNOs but also to network equipment manufacturers.
	Moreover, given that the 6G-LoRaGRAN platform is open to researchers interested in exploring LoRaWAN and 5G integration, along with developing radio resource management algorithms to enhance network slicing in LoRaWAN, the project will foster collaboration opportunities with research teams from companies, research centers, and universities across Europe and beyond. This expanded collaboration network has the potential to extend the reach of the 6G-SANDBOX project.

OC Project Title	O-RAN research prototype for the 6G-SANDBOX platform
Benefiaciary(s)/Country	EIGHT BELLS LTD, Cyprus
Project Description	ASTRAL is in position to adopt popular open-source libraries (i.e., srsRAN) and to integrate them with the latest O-RAN near-RT RIC software. This will be achieved through the establishment of the standardized E2 interface and the development of an E2 Agent integrated in srsRAN. Such a deployment will enable the data exchange between RAN and near-RT RIC, and the control and optimization of RAN functions and resources in (near) real-time through proper software tools, called xApps.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga, Spain
Implementation timeframe	September 2023 – March 2024
Results & Impact	ASTRAL extension adopted popular open-source libraries (i.e., srsRAN) and integrated them with the latest O-RAN near-RT RIC software through the establishment of the standardized E2 interface and the development of an E2 Agent integrated in srsRAN. Such a deployment enabled the data exchange between RAN and near-RT RIC, and the control and optimization of RAN functions and resources in (near) real-time through proper software tools, collectively called "xApps". Potential xApps include handover optimization, radio link monitoring, mobility management, load balancing, slicing policy updates, traffic steering, and interference
	management. Moreover, additional software applications that may leverage on AI/ML based algorithms to optimize RAN functions will be enabled.

OC Project Title	ReleAse-16 Device IntegrAtioN and Trialing in open experimentation facilities
Benefiaciary(s)/Country	Fivecomm, Spain
Project Description	Fivecomm will provide to the 6G-SANDBOX project a set of 8 Release (Rel)-16 5G modems, developed by the company, that will allow consortium members to experiment on the four different infrastructures with Rel-16. Such modems represent a natural evolution of our 5G Release-15 modems, which were developed, integrated and validated in a wide range of test-bed infrastructures and Horizon 2020 5G-PPP previous projects including: FUDGE-5G, 5G-RECORDS, iNGENIOUS, 5G-IANA and 5G-INDUCE. The Rel-16 modems integrate a Quectel RG520N-EU module that, in turn, employs a Qualcomm radio chipset (Snapdragon x62). Our Rel-16 modems have been already tested and validated in the Rel-16 network of the Universitat Politècnica de València (UPV), in Spain. The 5G modems provided by Fivecomm are a solution that connects any user device (e.g., cameras, drones, robots, etc.) to the 5G network. The 5G modem has simplified electronics while minimized power consumption and cost. It is versatile enough to adapt to the different requirements and scenarios specified by industrial verticals in the context of the 6G-SANDBOX project. The various versions of 5G modems offer connectivity through different interfaces, including Ethernet or USB. It is important to note that mm-wave (n257 band) is not supported, as currently no alternatives in Release-16 chipsets that include this frequency band have been found in the market for their integration.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Oulu (additional implementation in Malaga)
Implementation timeframe	September 2023 – March 2024
Results & Impact	 Thanks to the RADIANT project, Fivecomm was able to take their 5G Rel-15 device as a basis and design a new complete model with a much more reduced form factor and additional functionalities, such as the use of USB for direct connection of the module to testing software. The 5G modems provided by Fivecomm are a solution that connects any user device to the network. They integrate a 5G Rel-16 module, i.e., a Quectel RG520N-EU module with a Qualcomm radio chipset Snapdragon x62. Eight 5G modems were developed, classified into three categories: Small-size modems: light version of our prototype, so-called 5G BROAD, to be used in simple scenarios where only 5G connectivity is needed in a particular device. Medium-size modems: full version of the 5G BROAD consisting of a 5G hat and a Raspberry Pi 4, to be used in moving devices and more complex scenarios. Fixed modems: different version using an outdoor case with IP protection for outdoor scenarios.

ONEmNEF

OC Project Title	OneSource's Microservicebased Network Exposure Function
Benefiaciary(s)/Country	One Source, Consultoria Informática Lda, Portugal
Project Description	This proposal outlines OneSource's proposal to integrate its innovative Microservice-based NEF into the 6G-SANDBOX platform, thus enhancing its capabilities and providing users with a range of essential features specified by the 3GPP NEF framework. Furthermore, OneSource intends to include its own state-of-the art security solution to further enhance security for NEF APIs. The integration of ONEMNEF into three of the 6G-SANDBOX testbeds and their corresponding 5GCs aims to leverage the solution's flexibility and scalability, enabling an extended set of capabilities for the platform users. The NEF acts as a pivotal component in the network, facilitating secure and controlled exposure of network services and data to authorized third-party applications. By incorporating NEF capabilities, project 6G-SANDBOX will enable developers and researchers to explore new possibilities and conduct advanced experiments in its evolving 6G ecosystem.
Vertical	n/a (networking related experiment/implementation)
Testbed	Demokritos (Athens), Fraunhofer FOKUS (Berlin), University of Malaga
Implementation	September 2023 – March 2024
timeframe	
Results & Impact	To evaluate the detection performance of the HSPF detection module, a comprehensive evaluation scenario has been outlined as follows: 1 Collection of Normal Traffic: The initial step involved collecting normal network traffic. This process was conducted concurrently with one of the testing rounds designed to evaluate the NEF performance. While the characteristics of different validation tests for the NEF varied in terms of the number of simultaneous requests and respective intervals, the variability in data among these tests was minimal. Thus, whether collecting one or multiple scenarios of norma traffic, the resulting data, after undergoing standardization, would have similar characteristics. 2 Federated Training of ML Model: Following the collection of normal traffic, the HSPF Agent initiated a federated training round orchestrated by the HSPF Orchestrator. This process resulted in a trained ML model capable of accurately identifying normal traffic patterns similar to those observed during the network traffic collection phase. 3 Simulation of Malicious Flows: To simulate malicious flows, a script originally used for validating the integration between the NEF and the 5G Core was adapted. This adaptation involved the simulation of SQL injection commands and malformed URLs, using the create A set of three experiments were conducted for each of the scenarios (SQL Injection commands in the payload and Malformed URLs), resulting in the generation of 60 malicious requests.

RAYPLICATE

OC Project Title	RAY-tracing based Physical Layer Inside 6G digital AccuraTE twin
Benefiaciary(s)/Country	SIRADEL (Engie group, France)
Project Description	SIRADEL contributes to the elaboration of an accurate digital twin (DT) for the Malaga platform. The radio physical layer can be simulated from a precise 3D digital representation of the deployed infrastructure (environment, base-stations, antennas) and deterministic ray-tracing emulation of the MIMO channel properties. The ray-tracing outputs are exploited by the Keysight's digital twin solution, such that the performance of the real testbed can be reproduced in the virtual world, or new network scenarios (in terms of deployment, antenna system, resource management, etc) can be precisely assessed. This DT solution will be operational for several physical deployments implemented in the Malaga platform, including: FR1/FR2 small-cells installed on the rooftop or inside the Ada Byron building (University campus); and FR1 small-cells deployed in Malaga downtown.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga
Implementation timeframe	September 2023 – March 2024
Results & Impact	It should be noted that the outdoor FR2 measurements on the campus and FR1 ones in Malaga downtown will be exploited after completion of the RAYPLICATE project to perform the calibration of SIRADEL's Volcano Urban propagation model dedicated for outdoor environments. The same applies for the FR1 indoor measurements on the ground floor and 1st floor of Ada Byron building, which will be used to calibrate SIRADEL's Volcano Flex propagation model specifically intended for indoor environments.

NDWAF - StreamAnalyzer

OC Project Title	NDWAF – StreamAnalyzer
Benefiaciary(s)/Country	Lamda Networks P.C, Greece
Project Description	Within the scope of this project, we will enhance our commercial software product, StreamAnalyzer so that it offers certain 3GPP NWDAF functionalities to the 6G-SANDBOX project. Specifically, leveraging telemetry data from the Athens site (Open5GS, NEF and Amarisoft), we will implement and validate: (I) selected functionalities from 3GPP TS 23.288 NWDAF APIs Events Subscription, Analytics Info, Data Management & ML Model Provision and (II) the NWDAF use cases network conditions and performance, device behavior, and service experience. Furthermore, we will support the CAPIF/NEF integration framework. Our NWDAF validated functionalities shall be maintained and supported throughout the full duration of the 6G-SANDBOX project.
Vertical	n/a (networking related experiment/implementation)
Testbed	Demokritos, Greece
Implementation timeframe	June 2024 – December 2024
Results & Impact	his project implemented NWDAF_StreamAnalyzer, a Proof-of-Concept prototype of an NWDAF Event Subcription Service providing predictions for the 3GPP TS29.520 Events 'UE_COMMUNICATION' and 'NUM_OF_UE'. We managed to achieve quite satisfactory predictions' accuracy when we validated our experimentally-driven configuration of the LSTM prediction model in Demokritos' 5G environment in a real-life experiment involving a 5G smartphone accessing the Internet to receive a video file. Therefore, we could state that we have a Proof of Concept (PoC) of an NWDAF with accurate prediction mechanisms for the Events 'UE_COMMUNICATION' and 'NUM_OF_UE'. The above results are encouraging us to pursue the continuation of the implementation of NWDAF_StreamAnalyzer in order to reach the maturity of an MVP.

REACT-6G

OC Project Title	RAN IntElligent Automation and Control via xApps Towards 6G
Benefiaciary(s)/Country	Four Dot Infinity, Greece
	Accelleran N.V., Belgium
	 Software Radio Systems Limited, Ireland
Project Description	The main objective of REACT-6G was to deploy additional RAN
	components in facility at University of Malaga as well as to develop and
	integrate xApps and CM functionalities, further enhancing the
	capabilities provided by 6GSANDBOX, to maximise the project's uptake
	by interested 6G stakeholders and application developers.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga
Implementation	June 2024 – December 2024
timeframe	
Results & Impact	Outcomes:
	• A disaggregated RAN architecture has been delivered and tested
	across two servers with RIC/CU/DU and Open5GS components to
	ensure modularity and scalability. The delivered RAN architecture leverages full 10G connectivity between CU and DU, with front-haul
	links carefully monitored for packet loss. The configuration supports
	flexible deployment, making it a robust foundation for performance
	benchmarking and future beyond 5G innovations.
	Two xApps for power control of the RUs in a multi-cell environment
	have been developed. The ML models have been tested in an NDT
	simulated environment and integrated in the RI, along with the
	prototype reference CM. The CM functionality has been validated,
	showcasing its capability to detect direct conflicts across different
	power control actions and resolve them based on UE-centric or EE-
	centric policy.
	Impact of the results:
	• For the 6G-SANDBOX consortium: the delivered architecture enables
	the collection of measurements and data from the radio (RU/DU) that
	can be exploited by diverse 6G scenarios, thereby facilitating
	experimenters to conduct testing on 6G services towards future
	innovations. Moreover, the implementation of the ML-assisted
	algorithms in the O-RAN environment is included, showcasing the
	adoption of automated radio control.
	• For the REACT-6G consortium partners: the involved partners are
	planning to be commercially active in 6G technologies, developing and
	integrating additional RAN equipment and components, as well as ML
	algorithms residing in xApps in the framework of O-RAN architecture.
	In this context, FDI, ACC and SRS have already established relationships
	with members of 6G-SANDBOX's consortium, aiming to jointly develop
	O-RAN solutions for 6G networks with high commercial interest for the international markets.
	• Environmental Impact is implicitly achieved through the objectives of the delivered ML algorithms for power control. The ML-assisted energy
	efficiency operation of the radio units was evaluated through the
	intelligent ML-assisted xApps in the simulated environment.
	I interingent ivit-assisted AAPPS in the simulated environment.

OPEN CALLS PROJECTS: INNOVATIVE EXPERIMENTS

6G-EARN

OC Project Title	6G Energy IoAPNing
OC Project Title	6G-Energy learning ENERGY COMMUNITY BESSARION LIMITED LIABILITY COOPERATIVE,
Benefiaciary(s)/Country	Greece
Project Description	
Project Description	6G-EARN aims to develop i) a 5G-based variant of its monitoring solution and ii) a Federated Learning (FL) mechanism for accurate forecasting of
	energy consumption/production with the integration of external data
	sources. In particular, historical energy data along with data collected
	from locally deployed weather stations will be used. The proposed FL
	approach will ensure that the data of the end-user are not disclosed and
	hence its privacy is preserved.
Vertical	Energy
Testbed	OTE / Demokritos
Implementation	May 2024 – December 2024
timeframe	Triay 2027 December 2027
Results & Impact	he 6G-EARN service has been tested and its performance has been
nesures & impact	evaluated in different scenarios. A number of KPIs and KVIs have been
	derived and evaluated for both the service itself and the 6GSANDBOX
	experimentation platform. Regarding the 6G-EARN service, our main
	findings are:
	1. Aggregation of data from multiple sources as per Federated learning
	and with integration of external resources improves prediction accuracy
	by more than 100% (in cases of limited available data per client).
	2. Forecasting the daily consumption of a household can be sufficiently
	accurate, with mean absolute percentage error MAPE <20%
	3. Aggregating consumption data from too diverse data sources may have
	the opposite effect, and hence careful grouping of the users is necessary.
	4. 6G-EARN training can be completed in less than 10 minutes even
	without GPU availability at end-clients
	Regarding the 6G-SANDBOX experimentation platform, our main findings
	are:
	1. 6G-SANDBOX supports the deployment of any properly-designed cloud
	service and experiment with a diverse set of simulated Trial Networks
	scenarios.
	2. The connectivity and computation requirements of Energy
	communities are adequately captured by 6G-SANDBOX and 5G.
	3. Clear separation of the control and user planesin a 5GS deployment is
	necessary.
	4. With the cloudification of the 5G system, competition for computing
	resources between 5G and the hosted services should be considered and avoided.
	5. For compute-intensive services (such as the training phase of 6G-
	EARN), monitoring of the cloud infrastructure and flexible allocation of
	compute resources are critical
	compute resources are critical

6G-MOBKPI

OC Project Title	KPI measurement in 6G networks under mobility scenarios
Benefiaciary(s)/Country	Universidade de Vigo, Spain
Project Description	The aim of the 6G-MOBKPI experiment is to analyse the different key performance indicators (KPIs) for mobility scenarios of 6G networks. To this end, we propose to use a mobile user equipment (UE) mounted on top of an autonomous mobile robot with accurate localization, navigation and autonomous driving capabilities. The robot will be physically placed inside the 6G-SANDBOX testbed facilities in a location with coverage from different cells. In particular we plan to use the Malaga platform for our experiment leveraging its resources.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga
Implementation timeframe	May 2024 – December 2024
Results & Impact	The main result is the design, development and validation of the automated KPI measurement tool for mobility scenarios. The generated datasets with KPI measurements and location information are also a valuable result, which we have used to analyse the suitability of specific 5G setups to support IIoT use case applications. Moreover, we used the proposed tool to study the impact of handover on network KPIs, and identified some limitations of current handover algorithms to guarantee low latency and ensure network availability, which are critical for IIoT scenarios. Finally, as a side result of this experiment, we are preparing a conference paper, in collaboration with the University of Málaga, describing our
	proposed solution for enabling reproducible-mobility experiments in mobile networks, which we plan to submit to the 2025 EuCNC conference.

SCDT

OC Project Title	Smart Contract-based Digital Twins for the IoT
Benefiaciary(s)/Country	Athens University of Economics and Business
Contact point (Name,email)	n/a
Project Description	The SCDT experiments will assess the feasibility and evaluate the performance of a novel form of decentralized, transparent, auditable, interoperable, and secure digital twins for Internet of Things (IoT) devices, such as sensors and actuators. The IoT is envisioned to be an ecosystem of interconnected devices merging the cyber with the physical world, to provide a multitude of services. The IoT has been on the spotlight of many research efforts in the past few years, and it has already been used in a variety of use cases, such as smart cities, smart homes, healthcare, etc. However, there are still some IoT challenges that need to be addressed. First, IoT systems are fragmented, since there is a plethora of IoT devices from different manufacturers, using different protocols and standards. Second, securing IoT services requires complex security solutions, usually relying on advanced cryptographic techniques and algorithms, which have not been designed for the IoT, where many devices are limited in processing, memory and energy resources. We argue that digital twins, with the right design, can address both these challenges, enhancing the interoperability, auditability, and security of IoT systems.
Vertical	ІоТ
Testbed	University of Oulu, Finland
Implementation timeframe	May 2024 – December 2024
Results & Impact	In our experimentation, we conducted a variety of experiments to evaluate the performance of smart contractbased digital twins, e.g., latency, throughput, and to fine tune some of the blockchain's parameters, e.g., batch configuration.

MAGDALENA

OC Project Title	MeAsuring 5G anD sAteLlite nEtwork iNtegrAtion
Benefiaciary(s)/Country	Karlstad University, Sweden
Project Description	The convergence between terrestrial and non-terrestrial networks (TN and NTN) is an important trend within 5G/6G systems, where the integration of satellite components, either for mobile backhauling or as (part of) the access network is being standardized by 3GPP. Still, there is a limited understanding of the performance implications of such integration and experimental results are limited. With MAGDALENA, we aim to address this shortcoming by taking advantage of the 6G-SANDBOX Malaga platform, and in particular its integrated 5G and Starlink deployments.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga, Spain
Implementation timeframe	May 2024 – December 2024
Results & Impact	The MAGDALENA project provided several key technical insights into TN-NTN integration, particularly regarding satellite-based connectivity and congestion control mechanisms. One of the most significant findings is that the satellite exit point location (i.e., the point where traffic re-enters the terrestrial network) has a greater impact on round-trip time (RTT) than the physical proximity of the server. This challenges the common assumption that closer servers always result in lower latency. Additionally, our experiments revealed that while ICMP PING is useful for basic connectivity checks, it does not reliably reflect the RTT characteristics experienced by real services. Our TN-NTN integration evaluation showed that the system supports bandwidth-intensive services such as IoT data transmission and video surveillance effectively. However, it falls short for latency- and jittersensitive applications like real-time e-Gaming, primarily due to increased packet loss and higher RTT variability. In contrast, the 5G baseline can deliver satisfactory performance if the server is not too far. Furthermore, we compared different congestion control algorithms, with results showing that BBR consistently outperforms CUBIC in maintaining higher throughput, particularly in lossy environments. CUBIC, by contrast, is more conservative in response to packet loss and tends to underutilize available bandwidth under dynamic network conditions. Overall, our experimental results suggest that TN-NTN integration can effectively extend 5G connectivity to remote areas but presents performance limitations for latency-sensitive applications. These findings underscore the importance of satellite ground architecture design, realistic application-layer testing, and the selection of appropriate congestion control algorithms when integrating satellite links into 5G/6G systems.

MR@REAM

OC Project Title	MR@REAM				
Benefiaciary(s)/Country	Crisis Med UoA, Greece				
Project Description	MR@REAM (Mixed Reality for Remote Earthquake Area Management) is a real-time mixed reality platform esigned to enhance emergency response operations by bridging on-site first responders with remote management teams. The system leverages immersive MR technology, WebSocket-based communication, and 5G connectivity to enable bidirectional exchange of audiovisual and interaction data during high-pressure scenarios.				
	Through the use of 5G Standalone (SA) deployment and cloud infrastructure provided by 6G-SANDBOX Athens testbed, and a 5G CPE router for Wi-Fi 6 bridging, MR@REAM delivered a fully connected, hybrid MR workflow. The platform supports synchronized scenarios (triage, treatment), real-time collaboration, and scenario-aware decision-making, all over high-speed wireless links.				
Vertical	n/a (networking related experiment/implementation)				
Testbed	Demokritos, Greece				
Implementation timeframe	May 2024 – December 2024				
Results & Impact	The MR@REAM system was successfully validated under real-world conditions. Key achievements included: Reliable real-time communication between MR and PC, maintaining low-latency video/audio streaming at optimized configurations (60–70% quality, 1920x1080 resolution, ~20 Mbps). High responsiveness of the control system, with scenario updates and UI changes reflected instantly on both sides. Bi-directional voice communication remained stable and clear when bandwidth demands were controlled, especially with prioritization of audio in lower bitrate settings. Flexible encoder controls allowed fine-tuning of stream settings (FPS, resolution, quality), enabling adaptive performance testing. PC operator tools, such as network monitoring, timers, and UI interactions, empowered remote participants to supervise and assist effectively. Infrastructure readiness, thanks to the integration with 6G-SANDBOX testbed, 5G CPE devices, and the Amarisoft-based SA core, which provided a robust and modern networking layer. Despite the high performance, limitations appeared when pushing video quality beyond 80%, resulting in audio packet loss and slight UI desynchronization. These limitations were valuable for identifying future optimization paths such as adaptive streaming, bandwidth-aware prioritization, and further MR-side performance tuning.				

PowerStorm

OC Project Title	Energy-Aware Streaming Analytics Job Scheduling for 5G/6G Deployments
Benefiaciary(s)/Country	University of Cyprus
Project Description	Energy profiling and optimization are expected to play a crucial role in realizing the 5G/6G-enabled Internet of Things (IoT), as deploying intelligence closer to the network edges ensures better response times where data are generated. Despite this, research evaluating the energy performance of such deployments on next-generation networks remains scarce. In our experiments, we assessed various schedulers in the Apache Storm framework, including a round-robin scheduler, a resource-aware scheduler, and PowerStorm—a scheduler designed to balance performance and energy consumption for streaming analytics in geodistributed edge computing scenarios.
Vertical	Energy
Testbed	Fraunhofer FOKUS, Berlin
Implementation timeframe	May 2024 – December 2024
Results & Impact	In terms of energy consumption within the local network (ethernet), both PowerStorm and Resource-aware execution demonstrated a reduction in energy use, with decreases of approximately 15% and 5.9% respectively. Next, we analyzed energy consumption during the Edge Cluster execution, involving 5G data generation. In this scenario, PowerStorm resulted in a 13.2% increase in energy consumption, while the Resource-aware scheduler exhibited a substantial rise of 135.9%. This difference is due to the way scheduling nodes were selected. The Resource-Aware Scheduler distributed tasks across all available resources, leading to energy usage from both servers. In contrast, PowerStorm scheduled tasks on only two VMs hosted on the same server, resulting in lower energy consumption. Despite the increased energy demands, both approaches provided superior performance in latency reduction and overall tuples processed, illustrating the trade-off between energy efficiency and performance gains in this setting. Finally, we compared the energy consumption across three configurations, namely, the default execution of Apache Storm, the PowerStorm-enabled deployment, and the resource-aware deployment, in the 5G RAN network. In this comparison, PowerStorm showed a minimal energy increase of just 0.43%, whereas the Resource-aware scheduler nearly doubled the system's energy consumption, with an increase of 93.7%. Our experiments and analyses demonstrate that modern big data streaming engines are well-suited for operation on 5G networks. Running these engines on 5G networks offers performance benefits comparable to those of Ethernet connectivity. Furthermore, deploying 5G-enabled User Equipment (UE) devices with processing capabilities enhances both performance and energy efficiency, as evidenced by our experimental results.

Prosperancy

OC Project Title	Transparency protocol for performance on composite digital services			
Benefiaciary(s)/Country	Alis Grave Nil, Bulgaria			
Project Description	In the digital future shaped by augmented reality, the Metaverse, a high-speed internet interconnectivity, a wide range of online services or rely on multiple layers, each provided by different companies—creat a composite service. However, such a structure inherently poses challenge: when performance issues arise, consumers may fit themselves trapped in a cycle of uncertainty, unsure which provided responsible for the substandard experience.			
	We aim to merge technical and legal parameters in the outcome, therefore the experiment we are conducting is aimed at establishing acceptable deviation in the speed or latency of a composite service. On top of that we aim to create a clear-cut parameters for dispute resolution, as well as sufficient and cost sensitive methods for storage of large quantities of data to be used in the potential dispute resolution.			
Vertical	n/a (networking related experiment/implementation)			
Testbed	Fraunhofer FOKUS, Berlin			
Implementation timeframe	May 2024 – December 2024			
Results & Impact	The experiment allowed us to advance the technical, legal, and business aspects of Prosperancy in parallel, creating a seamless integration that strengthens the foundation of our future service. This multi-faceted approach provided the invaluable ability to make real-time adjustments across all dimensions, ensuring a more robust and user-centered service.			
	One of the key milestones achieved was reaching Technology Readiness Level (TRL) 6, a testament to the maturity and readiness of our solution for broader application. This achievement reflects our commitment to delivering a high-quality service capable of addressing complex challenges in next-generation connectivity.			
	In alignment with our mission to promote inclusivity and accessibility, we adopted an open-access business model. This decision ensures that our developments can be widely utilized, fostering a collaborative environment where innovation thrives.			
	As part of our contribution to dispute resolution, we developed comprehensive guidelines that provide clarity and consistency for mediators and adjudicators. These guidelines are designed to streamline processes, increase speed, extend transparency and improve outcomes for all parties involved.			

OC Project Title	Replicable Cellular Networking Experiments using ns-3		
Benefiaciary(s)/Country	INESCTEC, Portugal		
Project Description	Wireless networking R&D depends on experimentation to make realistic evaluations of networking solutions, as simulation is inherently a simplification of the real-world. However, despite more realistic, experimentation is limited in aspects where simulation excels, such as repeatability, reproducibility, and scalability.		
	Motivated by our hands-on experience with testbeds operating in emerging scenarios such as aerial and maritime, and with a track record of more than 10 years and multiple scientific publications on simulation-experimentation synergy, as well as a recognized position in the ns-3 community, INESC TEC has been developing a Trace-based Simulation (TS) approach that enables the recording and reproduction of past physical layer traces, such as received signal strength (RSS), on ns-3 network simulator. Until now, this approach has been validated on Wi-Fi. 6G-SANDBOX provides, now, the perfect opportunity to run experiments and validate this innovative approach for 5G/6G through REPLICA.		
Vertical	n/a (networking related experiment/implementation)		
Testbed	University of Malaga, Spain		
Results & Impact	The REPLICA project successfully collected and analyzed a comprehensive dataset from physical 5G SA experiments and complementary simulation activities. The comparison between real-world and simulated throughput results demonstrated that pure 3GPP-based simulations provided the closest match to experimental observations. This was largely due to the inclusion of features such as Time Division Duplex (TDD) partitioning, which were absent from the other models.		
	The machine learning—based path loss model showed potential for adaptive prediction across different scenarios but still requires refinement to improve accuracy under more variable conditions. Meanwhile, the trace-based simulation approach enabled realistic replay of test conditions but was inherently limited to specific test traces.		
	Across all configurations, higher variance in throughput was consistently observed at greater distances or under attenuated conditions, validating the strong impact of environmental factors on 5G NR performance, as expected. These results provide valuable insight for refining simulation models and enhancing the design and operational robustness of testbeds like 6G-SANDBOX, particularly in the context of trace-driven and reproducible experimentation.		

OC Project Title	Remote mEdical Support and Communication Utility in Emergency scenarios		
Benefiaciary(s)/Country	University of Sant'Anna, Italy		
Project Description	RESCUE project proposal aims to conduct an experimental field trial leveraging 5G connectivity where an innovative tele-assistance system is deployed and assessed with the focus to improve emergency and disaster response efforts. The tele-assistance system consists in a set of helmets (worn by the operators) that are equipped with a camera sending real-time audio/video streams of the scene of action (e.g., injured person) through the mobile network; and by a web application hosted in a server that allows doctors in an Operations Center to directly access the front view of the operators and communicate with them to assess the patient situation and guide their intervention. Thanks to the 6G-SANDBOX project, the proposed system will leverage on the attributes proposed by the 5GTN network in the Oulu testbed to integrate with the 5G network features provided by it and test its performance under different conditions.		
Vertical	Emergency and disaster response / Tele-assistance		
Testbed	University of Oulu		
Implementation timeframe	May 2024 – December 2024		
Results & Impact	The system's performance was evaluated during experimentation across various network scenarios, focusing on the transition from 4G connectivity, currently used by the system, to 5G connectivity provided by the 5GTN (at Oulu University), including both 5G Non-Standalone (NSA) and Standalone (SA) networks. A hybrid configuration combining Wi-Fi and 5G was also tested. The results demonstrated significant performance improvements in bandwidth (bit rate increased up to a factor 5) and round-trip time, highlighting 5G's capability to enhance the tele-assistance system's Quality of Service (QoS) in terms of responsiveness and Quality of Experience (QoE) in terms of video stream quality as perceived by the remote doctor. Additionally, tests with different hardware platforms (i.e., Raspberry Pi 3, 4, and 5) revealed that greater computational power positively impacts overall system performance.		

NTN WAVE

OC Project Title	NTN Waveform Performance Analysis		
Benefiaciary(s)/Country	Luxembourg Institute of Science and Technology, Luxembourg		
Project Description	This project presents a comparative experimental study of 5G New Radio (5G NR) and DVB-RCS2 waveforms for their suitability in non-terrestrial networks (NTN) operating in geostationary (GEO) satellite scenarios. Using open-source platforms such as the OpenAirInterface5G NTN suite for 5G NR and openSAND for DVB-RCS2, the experiment evaluates each technology's performance under realistic traffic conditions including video streaming, file transfers, and interactive applications. Performance is assessed across key metrics such as throughput, latency, jitter, and error rates, under various system configurations and channel conditions including large GEO delays and different signal-to-noise ratios. The novelty of this work lies in its cross-layer, end-to-end emulation using publicly available tools. It addresses key limitations in prior research that either focused solely on physical layer simulations or relied on proprietary platforms. This is one of the first experiments to directly compare DVB-RCS2 and 5G NR using open tools under realistic conditions, offering practical and reproducible insights into their respective strengths, weaknesses, and potential synergies.		
Vertical	n/a (networking related experiment/implementation)		
Testbed	Demokritos, Greece		
Results & Impact	This work successfully implemented and validated a comparative experimentation framework for evaluating the performance of 5G-NR and DVB-S2/RCS2 technologies under a unified simulation environment using the 6G-SANDBOX testbed. The experiments revealed that 5G-NTN offers consistently lower jitter and higher throughput compared to DVB-S2/RCS2, owing to its flexible scheduling, leaner protocol stack, and grant-based uplink access. In contrast, DVB-S2/RCS2 showed longer startup delays and lower throughput but performed comparably well in delay-tolerant use cases such as webpage loading. Importantly, all experiments were designed to be repeatable, and the developed tools and test scenarios can be reused for future validation efforts. Beyond performance data, the work highlighted key limitations of non-real-time simulation environments, such as timing imprecision and lack of hardware-driven synchronization, offering valuable feedback for testbed improvement.		

OC Project Title	Real-Time Visualization and Digital Twin Platform			
Benefiaciary(s)/Country	FINWE, Finland			
Project Description	Next-generation 6G networks aim to revolutionize wireless communication by enabling advanced use cases such as holographic communication, tactile Internet, digital twins, and extended reality (XR). However, developing and validating networks for these applications is challenging due to uncertainties in future technological developments and the difficulty of visualizing complex radio behaviors and network performance. To address these challenges, we propose a modular, open-source, real-time 3D visualization platform that integrates real or simulated use cases into a digital twin of a 6G laboratory environment. This system allows researchers to observe and interact with network KPIs—such as latency, throughput, and signal strength—through immersive simulations that reflect their real-world impact on perceived Quality of Service (QoS). The platform features a 3D globe UI for multi-site collaboration, XR headset support via WebXR, and interactive plug-in-based use case simulations (e.g., robot control, media streaming). It also supports multi-user interaction, live experimentation, and replay capabilities using ROS2 and OpenVidu frameworks. By making invisible network phenomena visible and tangible, this solution enhances research collaboration, stakeholder communication, and training in future network technologies			
Vertical	Media / extended reality (XR)			
Testbed	University of Oulu, Finland			
Results & Impact	 Dynamic Digital Twin (3D model) of a 6G-SANDBOX laboratory site Multi-Site Support: a 3D globe-like user interface was for navigating between 6G-SANDBOX laboratory sites Real-Time 3D graphical visualization of selected network KPIs Use Case Simulations for Perceived QoS The results were demonstrated at EuCNC 6G-SANDBOX booth. Oulu lab digital twin was also used in co-operation in EU-Converge project booth, whose live experiments could be observed from the 6G-SANDBOX booth via the digital twin. 			

6G-VLCBOX

OC Project Title	Scalable applications with point-to-multipoint communication towards 6G/IMT-2030 technologies		
Benefiaciary(s)/Country	Universitat Politècnica de València, Spain		
Project Description	end-to-end 3GPP Rel-18 system incorporating, for the first time and in an open-source environment, 5G Multicast-Broadcast Services (MBS) features for reliable, low latency, and scalable communication. The open-source software components for MBS contribute towards the SNS Stream C goals of advancing on open architectures and APIs while providing full customization and control for 6G-SANDBOX members and the community. The ability to customize code and configuration is of particular relevance given that MBS spans the UE, RAN (gNB), 5G Core (5GC) and User Services architecture. The project will develop the necessary 3GPP features to enable MBS by extending existing open-source initiatives: For the MBS RAN and UE, the srsRAN platform will be further developed to integrate point-to-multipoint NR features; while for the MBS functions in the 5GC, the relevant control and user plane network functions will be extended from the Open5GS core implementation. This means to update both segments of the solution to Rel-17 and Rel-18 functionalities. The solutions will be integrated into the Malaga's platform, which already features SDR (software defined radio) equipment and Open5GS, with the objective to create a new type of Broadcast-enabled Trial Network. The developments of the project will be aligned with the efforts of the 5G-MAG Reference Tools development programme, which fills the gaps between the development of specifications for multimedia applications and their conformance testing, validation and prototyping. Moreover, the project will contribute feedback to 3GPP as part of 5G-MAG's activities as 3GPP Market Representative Partner. Additionally, 6G-VLCBOX will also provide insight into MBS applications for media, public safety and its potential integration with Non-Terrestrial Networks.		
Vertical	Media / 5G Multicast-Broadcast Services		
Testbed	University of Malaga, Spain		
Results & Impact	The project is being implemented.		

NEXT-CELL-GNN

OC Project Title	Next cell prediction using Graph Neural Networks	
Benefiaciary(s)/Country	The Laude Technology Company, Spain	
Project Description	The main objective of the project is to train, evaluate and optimize advanced Graph Neural Network (GNN) models for predicting which base station a user will connect	
	to in mobile networks. This will enable improved handover management, identification of congested cells, and optimization of network performance and energy consumption. The project cover creating graph-structured data from network simulations, developing different GNN models adapted to this problem, and their integration, testing, and validation on an open experimental platform. Thus, it seeks to demonstrate the feasibility and real benefits of these techniques for intelligent connectivity management in telecommunications operators, overcoming the limitations of closed solutions and proposing an open and scalable approach for the sector.	
Vertical	n/a (networking related experiment/implementation)	
Testbed	Demokritos, Greece	
Results & Impact	Our model achieved high prediction accuracy in two different scenarios. In Scenario 1, it reached a Mean Reciprocal Rank of 0.8866, Hits@1 of 84.3%, and overall accuracy of 95.2%, with precision at 74.3%, recall of 87.1%, F1 score of 78.3%, and Matthews Correlation Coefficient of 0.7746. Scenario 2 showed further improvement, with a Mean Reciprocal Rank of 0.8992, Hits@1 of 85.5%, accuracy of 95.7%, precision of 76.2%, recall of 90.1%, F1 score of 80.6%, and Matthews Correlation Coefficient of 0.8012. Stable inference with temporal filtering was developed, achieving an average prediction latency of 0.607 seconds suitable for near real-time applications. The solution was fully integrated with CAPIF APIs and validated in a 6G-SANDBOX laboratory environment, demonstrating practical deployment readiness. These results have significant impact by validating GNN technology as a viable solution for next-generation network management and establishing expertise in Al-driven telecommunications while creating publicly available large-scale emulation datasets that fill important research gaps. The improved handover prediction with sub-second latency enables more reliable mobile connectivity, reducing dropped calls and service interruptions. Additionally, the optimized handover management significantly reduces energy consumption in mobile networks by preventing unnecessary base station activations and enabling more efficient resource utilization.	

6GMeasurOps

OC Project Title	6G Measurement and QoS Predictability Operations
Benefiaciary(s)/Country	Feron Technologies, Greece
Project Description	6GMeasurOps introduced a dual-agent measurement and prediction framework to assess and forecast 5G/6G network performance under real-world conditions. The solution combines a portable Golden Unit (mini-PC with 5G modem and Dockerized measurement suite) with a Server at the UPF breakout, enabling synchronized active and passive monitoring – from PHY to the application.
Vertical	n/a (networking related experiment/implementation)
Testbed	Demokritos, Greece
Results & Impact	6GMeasurOps conducted >3,000 experiment runs at the 6G-SANDBOX Athens/OTE Academy site, covering diverse packet sizes, intervals, durations, and load conditions in three different layers. In the physical layer, RSRP, RSRQ and SINR remained stable with minimal fluctuations, showing reliable mid-band 5G coverage. Measurements confirmed strong radio stability even under stress traffic. In the transport layer, TCP uplink throughput was consistently ~80 Mbps, while TCP downlink throughput was ~15–18% lower than uplink. UDP flows showed larger variance, confirming sensitivity to congestion/load and aggregated RTTs were in line with commercial thresholds; retransmission rates were measurable but within acceptable ranges. Regarding application layer results, MQTT outperformed video streaming in latency and jitter — ideal for IoT, URLLC, and low-power services. while video streaming suffered more from jitter and bandwidth fluctuations, highlighting its sensitivity to load. Application-level RTT evolutions over hours confirmed stable MQTT but variable video flows behavior. Finally, regarding AI prediction, the LSTM predictor achieved high accuracy (SMAPE>90%) for uplink throughput and RTT. Overall, the dual-agent architecture proved robust and reproducible. By combining PHY, transport, and application measurements with AI forecasting, the platform went beyond benchmarking — it delivered predictive QoS intelligence. 6GMeasurOps can have significant technical and scientific impact, since: a) it demonstrated a portable, extensible measurement and prediction platform that works in real 5G NSA and SA networks; b) it Introduced a benchmarking + predictive QoS framework, bridging reactive and proactive network management. c) it created open-source software (QoSCOPE) for reproducible experiments; d) it provides validated datasets for future 6G research and contributions to 3GPP/ETSI standardization.

_			
	-	K I	

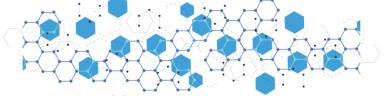
OC Project Title	Health Awareness via Radio Technology
Benefiaciary(s)/Country	Sykno GmbH, Germany
	Huawei Technologies Duesseldorf GmbH, Germany
Project Description	The HART project is advancing future 6G-enabled eHealth through the integration of Al-driven, contactless health monitoring and advanced wireless networks. Led by
	Sykno GmbH and the Huawei Munich Research Center, it focuses on vertical experimentation using Wireless Radio Sensing (WRS) via Sykno's ViRa24 vital sign radar system. This non-invasive technology uses mmWave signals to measure human vital signs – such as heart rate, respiration, heart rate variability, inter-beat intervals, and heart sounds – without physical contact, even through clothing. In scenarios like hospital waiting rooms or patient homes, WRS nodes anonymously monitor multiple patients, with data transmitted in real time over 5G/6G networks to a centralized computing platform. Al algorithms analyze the data to detect abnormalities and trigger timely medical alerts. The system supports scalable monitoring with high reliability and ultra-low latency – crucial for emergency response. Compared to traditional ECG, HART's approach reduces staff workload and improves hygiene by eliminating electrodes. It also enhances privacy by avoiding cameras and personal data collection, aligning with
Vertical	6G trust and security standards. Health
Testbed	Fraunhofer FOKUS, Berlin
Results & Impact	The HART project advanced eHealth by developing and evaluating wireless radar sensors for contactless monitoring of vital signs like heart rate and respiration. In a lab trial, these sensors delivered accurate data through Al-powered signal processing, capturing detailed cardiac and respiratory patterns. The performance of the 5G network used to connect sensor, processing
	and display nodes was evaluated using KPIs and KVIs, showing reliable traffic patterns, strong clustering (Silhouette score up to 0.6515), and high peak similarity (up to 0.9631). Techniques like Dynamic Time Warping and K-Means Clustering modeled traffic behaviors effectively, though clustering robustness showed room for improvement. Data privacy was ensured via end-to-end encryption, secure protocols, and GDPR compliance using encrypted dummy data. HART will showcase its results in future events and plans further innovations, including predictive models and pilot programs for broader healthcare scalability.

OC Project Title	Orchestration of Virtualized Passive QoS Measurement
Benefiaciary(s)/Country	Kaitotek, Finland
Project Description	The OVQOS project targeted to extend the measurement capabilities of the 6G-SANDBOX experimentation platform with Kaitotek's Qosium solution. The 6G-SANDBOX testbed platforms were already equipped with many high-quality measurement solutions to evaluate the performance of the networks and new techniques developed upon them. The experiment did not overlap with the current capabilities but aimed at introducing measurement capabilities for measuring Quality of Service (QoS) and Quality of Experience (QoE) experienced by applications beyond those supported by the current toolset that were mainly active, basing the measurement on synthetic test traffic. Qosium, as a passive solution, tells in real-time exactly the QoS the real ongoing applications get from the network with unmatched accuracy.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Oulu, Finland
Results & Impact	The main result of the project is the successful integration of Qosium into the 6G-SANDBOX experimentation platform as a new TN Component. Qosium extends the range of measurement capabilities available for experimenters, bringing unique aspects to measure the QoS passively for real applications in real-time without synthetic test traffic. A study for different means regarding results federation and multi-site measurements for a comparative performance analysis of measurements carried out over different platforms was also carried out. The study result introduces multiple different alternatives to integrate results federation into the 6G-SANDBOX architecture. A part of the project outcome was demonstrated at the 2025 EuCNC & 6G Summit, being the final, public showcase of OVQOS. The demonstration was carried out in close cooperation with the University of Oulu and two other Open Call projects, 6G-VIZ and OAIBOX+RIS. Real-time monitoring of network quality for applications is a gamechanger in critical network infrastructures and R&D, enabling immediate identification and resolution of performance bottlenecks, service disruptions, and resource allocation issues. This not only leads to an improved user experience and minimized downtimes in operative networks but also provides researchers with valuable data and information for technology validation. The experiment provides the scientific community and industry with additional capabilities on utilizing passive QoS measurement results.

6G4Artifacts

OC Project Title	6G4Artifacts
Benefiaciary(s)/Country	STAM, Italy
Project Description	The 6G4Artifacts project introduces an innovative remote-controlled robotic system designed for the safe handling and movement of ancient artifacts with precision and without damaging them. By leveraging 5G-enabled teleoperation, robotics, and immersive VR interfaces, the system ensures precise and delicate manipulation, minimizing the risk of damage to fragile cultural artifacts. The project sets the foundation for future applications, including automated artifact restoration and conservation, expanding the role of robotics in cultural heritage management.
Vertical	Robotics
Testbed	Fraunhofer FOKUS, Berlin
Results & Impact	The first preliminary tests performed on blocks of different shapes showed that, after initial issues that have been solved with the support of our mentor from 6G-SANDBOX, the system provided optimal network performance and the user were able to execute the required tasks with precision. The network showed low latency (RTT of 76ms), 100% uptime, 4% packet loss, a jitter of 1.38ms and a stable 15 FPS at HD quality. Thanks to the good network performance, the users were able to maneuver the blocks precisely, always grasping them correctly and positioning inside their bases with high precision (2.5mm) and a low error rate (3%). Initial feedback on the system usability also provided a positive insight on its simplicity of use and overall usability. Also for the full validation tests, where users were asked to manipulate artifacts replica of different shape and materials, network performances confirmed the previous good values, with low latency (76ms), 100% uptime, low jitter (14ms) and a constant 15 FPS at HD quality. Concerning the functional capabilities of the remotely-controlled robotic system, users were able to perform the required manipulation tasks with precision both in terms of gripper positioning and force applied. Users caused no damage to the artifacts, only needing to restart the task 1 out of 10 times to correct it. An average of 1 minute per artifact manipulation was registered, and the users confirmed the positive feedback regarding the system usability. Overall, the 6G4Artifacts system provides a robust and scalable foundation for teleoperation in sensitive environments, leveraging next-generation connectivity and immersive user interfaces to empower safe and effective human-robot collaboration at a distance.

OC Project Title	Adversarial Resistance and Model Optimization for Robustness for 6G Open Radio Access Network
Benefiaciary(s)/Country	University College Dublin, Ireland
Project Description	The ARMOR project aimed to strengthen the robustness of Artificial Intelligence (AI) models in Open Radio Access Networks (O-RAN) against adversarial threats, which
	pose risks to performance, privacy, and trust. The main goal was to develop and validate an adversarial testing framework capable of systematically evaluating AI
	model vulnerabilities across evasion, inference, inversion, and poisoning attack vectors. The targeted use case was Al-based Intrusion Detection Systems (IDS) trained on radio telemetry data for anomaly detection in O-RAN environments.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Oulu, Finland
Results & Impact	Testing revealed critical weaknesses in IDS models, including a complete drop in detection accuracy under small evasion attacks, significant privacy leakage through
	membership inference, and class collapse under targeted poisoning. The results confirmed the necessity of adversarial testing before deployment and demonstrated reproducibility across both UCD and Oulu testbeds. The impact is twofold: An essential security testing extension for 6G applications such as Al-enabled xApps that strengthens 6G Al security and robustness, while the ARMOR team gained technical expertise, visibility, and potential avenues for commercial exploitation in Al security.



QAIBOX+RIS

OC Project Title	Testing the integration of an open-source 5G FR2 gNB with the 6G-SANDBOX Reconfigurable Intelligent Surface
Benefiaciary(s)/Country	Allbesmart, Portugal
Project Description	The main objective of the 6G-SANDBOX OC3 project is to test and validate the 6G-SANDBOX Reconfigurable Intelligent Surface (RIS) technology, developed by Queen's University Belfast (QUB) and available at the University of Malaga. We will test the integration of the QUB's RIS with the OAIBOX mmWave and commercial UEs in several propagation scenarios.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga, Spain
Results & Impact	This trial has demonstrated that a 5G FR2 cellular system requires a clear line-of-sight (LoS) between the gNB and the UE to ensure a stable end-to-end connection. The use of the RIS prototype, developed by QUB, demonstrated a 3 dB gain in RSRP and SINR measured in shadowed areas. 5G FR2 radio coverage assessment at 28 GHz with 200 MHz bandwidth showed a stable 5G connection with 245 Mbps downlink (DL), 64 Mbps uplink (UL), and 15 ms latency measured at 5 meters (LOS) from the gNB. This project marked the first successful integration of a third party RIS with the OAIBOX mmWave 5G system developed and commercialized by Allbesmart. Driven by increasing interest from OAIBOX customers in advanced 5G mmWave experimentation, this integration demonstrates the feasibility of real-time RIS control and monitoring through the OAIBOX dashboard. This new capability significantly expands the potential use cases and opens new business opportunities for the OAIBOX product line (www.oaibox.com) in the evolving 5G and 6G research landscape. The experiment also highlighted important technical requirements for successful RIS integration, such as the need for a well-defined API and comprehensive documentation from RIS manufacturers. During the project, several Merge Requests submitted by Allbesmart were approved by the OAI Software Alliance, enhancing 5G FR2 gNB stability. These contributions have been integrated into the official OAI opensource codebase, which serves a global community of thousands of developers and 5G/6G researchers. This represents a significant large-scale project impact.

ECO-RAN

OC Project Title	Energy Consumption Optimization in O-RAN
Benefiaciary(s)/Country	i2CAT Foundation, Spain
Project Description	ECO-RAN focuses on reducing the energy consumption of 5G networks through the selective deactivation of 5G cells. Using a realistic dataset from a European MNO, we
	developed AI-based strategies to determine cell on/off switching based on the load of cells in a specific sector and site, while evaluating the impact on UE Quality of
	Service. This approach faces two key challenges.
	• First, ensuring that energy-saving policies do not compromise the quality of service provided by operators, according to their specific policies or constraints.
	• Second, validating and refining these methods through the application of Digital Twins before deployment in real networks.
	To address these challenges, ECO-RAN leveraged the 6G-SANDBOX Keysight RIC Tester to generate realistic synthetic data and implement practical O-RAN-based
	control-loop operations.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga, Spain
Results & Impact	First, the validation of the use case and energy-saving strategy demonstrates how Al-driven and O-RAN-based programmability can help MNOs reduce CO ₂ emissions
	and associated OPEX, contributing to societal and environmental sustainability in line with global SDG goals. For instance, results show that, for an average
	throughput of 15 Mbps per UE and a maximum outage probability of 5%, the targeted cells could be switched off for approximately 40% of a week. When considering 5 Mbps and 10% outage, this value could increase to around 70%. These policies, managing the energy-QoS trade-off could be defined by the operator and considered by our developed solution during inference. Second, we have advanced the implementation of our O-RAN framework (AI Engine plus RICs), developing and validating its compatibility with RAN emulators such as the Keysight RIC Tester. This progress will increase the TRL of the infrastructure by demonstrating scalability and conformance with O-RAN standards, while enabling the development of novel and innovative use cases in future projects.

OC Project Title	Blockchain Enabled End-to-End Network Slicing for Manufacturing
Benefiaciary(s)/Country	University of Sheffield / AMRC, United Kingdom
Project Description	The manufacturing sector demands end-to-end network slicing (E2ENS) to meet diverse operational requirements such as high availability, guaranteed bandwidth, and ultra-low latency. However, current private 5G networks lack clearly defined service-level agreements (SLAs) to support transparent, traceable, secure, and efficient automation of E2ENS. This research introduces a blockchainenabled approach to automate E2ENS through the use of smart contracts. These contracts establish tamper-proof, transparent agreements among key stakeholders — including mobile network operators, telecom regulators, and end users — tailored to specific manufacturing needs. The project will develop and implement smart contracts for two E2ENS scenarios, each governed by pre-defined SLAs. Upon fulfilment of the contractual conditions, the network slices will be instantiated automatically to meet the required use case parameters. This approach enables dynamic, demand-driven allocation of network resources over shared infrastructure, allowing rapid adaptation to evolving industrial requirements.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Oulu, Finland
Results & Impact	he BENSM experimentation validated the seamless integration of a permissioned blockchain with 5G network
	slicing to meet industrial SLAs. By exercising both control-plane and data-plane workflows, we confirmed that
	distributed ledger anchoring, and modular orchestration can co-exist to deliver transparent, auditable, and reliable network services.
	BENSM contributed significant new functionality to the 6G-SANDBOX platform by integrating blockchainenabled SLA tracking, decentralized orchestration, and on-chain KPI anchoring. These extensions support auditability and trust in multi-tenant slicing environments key for industrial and enterprise applications. The project validated not just the technical feasibility of on-chain SLA enforcement, but also the usability of the system via the 6G-SANDBOX portal, demonstrating end-to-end orchestration, real-time monitoring, and compliance verification. These capabilities expand the 6G-SANDBOX experimentation scope to include security and trust as core metrics, enabling future research into secure and autonomous network operations.

CamouflageAntenna

OC Project Title	Hidden antennas for urban environments
Benefiaciary(s)/Country	AGC GLASS EUROPE, Belgium
Project Description	Everyday connectivity is essential, with antennas playing a vital role in delivering reliable signals from the moment we wake up to the moment we go back to sleep, for work, leisure, and daily tasks. This places greater pressure on the delivery of stable, reliable, and accessible signals for an ever-growing number of connected devices. Added to the mix is the fact that delivering greater connectivity requires more antenna in many more places. This can quickly create an unsightly view particularly in historic cities and buildings. And with that, several challenges arise that require innovative technologies taking into consideration the visual impact of the solutions. To answer these deployment challenges, we developed "WAVEATTOCH" solution. This solution consist of using the glass facades of the buildings by installing transparent glass antenna developed by AGC installed "inside building" to radiate through the glazing "outside the building". This solution allow to avoid the traditional challenges of the actual solutions (such as: installation on utility poles, traffic light, bus stops, lamppostsetc): - Expensive: high cost to put 5G cell on utility poles for example - Slow approval: 18 to 24 months for authorities' approval - Complex supply: 6 to 18 months for procurement process - Expensive works: providing power and backhaul to each site - Vandalism risks - Camouflage effort needed And offer several advantages: - Use the façade as new place to provide coverage - Faster Simplified Permit - Plug and Play (Power & Fiber: indoor antenna and electronics) - Transparent antenna allow high densification with low power - Better Esthetics - No vandalism risks As a results, and taking into account the advantages mentioned above, the telecom players can more easily and quickly provide reliable and good connectivity for their customers.
Vertical	n/a (networking related experiment/implementation)
Testbed	University of Malaga, Spain
Results & Impact	The project is being implemented.

