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EXECUTIVE SUMMARY

This document explores the role of Artificial Intelligence (Al) and Machine Learning (ML) in advancing
smart networks and services, particularly in the context of the sixth-generation wireless network (6G).
Key Al/ML concepts and terminology are clarified, current standardisation approaches are presented,

while open implementations and research directions are described.

As explained in the document Al is the technology enabling machines to mimic human intelligence,
while ML is the toolbox of algorithms and methods that allow machines to learn and improve
performance. On this basis the reader is provided with a taxonomy of Al concepts (e.g., Al-native
systems, agentic Al, large language models (LLMs), multi-agent systems (MAS), generative Al (GenAl),
explainable Al (XAl) etc.) as well as the major ML types (from the fundamental learning methods to

Federated Learning (FL).

Given the Al/ML taxonomy the document presents standardised frameworks for Al/ML integration in
networks, including the Al/ML management framework from the 3rd Generation Partnership’s Project
(3GPP), the modular ML pipeline from the International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T), the Al/ML architecture from the Open Radio
Access Network (O-RAN) Alliance, and Al/ML-related studies and developments in European
Telecommunications Standards Institute (ETSI). The converged outcome refers to the importance of

modaularity, interoperability, and dynamic adaptation in Al/ML operations.

One step deeper, intensive Al/ML implementation efforts are currently allocated to the Agentic Al and
the Multi-Agent systems, with one major challenge being the devise of efficient multi-agent
communication protocols. In addition, since the lifecycle of ML models involves data collection, model
training, validation, deployment, and continuous monitoring and retraining, the DevOps principles
have been expanded to the Machine Learning Operations (MLOps) concept, while MLflow is
introduced as key enabler for implementing MLOps practices in dynamic and distributed

environments.

Finally, in the research and innovation domain the document underscores the importance of Al/ML in
driving innovation, enhancing network performance, and addressing challenges such as security, trust,

and sustainability in next-generation networks.
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ABBREVIATIONS AND ACRONYMS
o] e T —

5G Fifth-generation wireless network
6G Sixth-generation wireless network
3GPP 3rd Generation Partnership Project
A2A Agent-to-Agent Protocol

Al Artificial Intelligence

AN Autonomous Networks

ACP Agent Communication Protocol
ANP Agent Network Protocol

API Application Programming Interface
AIHP Al Inference Host Platform

ATHP Al Training Host Platform

CCN Convolutional Neural Network

DT Digital Twin

DAI Discriminative Al

DRL Deep Reinforcement Learning

ENI Experiential Networked Intelligence
ETSI European Telecommunications Standards Institute
F5G Fifth Generation Fixed Networks
FL Federated Learning

GenAl Generative Artificial Intelligence
GAN Generative Adversarial Networks
loT Internet of Things

INT/AFI Autonomic Management and Control

ISG Industry Specification Group

ITU-T International Telecommunication Union - Telecommunication Standardization Sector
KPI Key Performance Indicator

LLM Large Language Model

ML Machine Learning

MAC Media Access Control

MAS Multi-Agent Systems
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1 INTRODUCTION

At the dawn of the Al era, the regulations around the deployment and provision of Al in telecom
networks, cloud services, and digital platforms have been set by the European Union (EU)!; while
already Al is intensively used as the main tool for enhancing connectivity and computing, improving
network efficiency, supporting sustainability and advancing security?. Key Al research directions and
priorities are reflected in the Strategic Research and Innovation Agenda (SRIA) of the Smart Networks
and Services — Joint Undertaking (SNS-JU)3, as well as in many related white papers from SNS-JU and
its private side (i.e., the 6G-Industry association - 6G-IA), including the recent white papers on the
European vision for the 6G Network ecosystem?, and the survey on Al and ML components and

approaches proposed by SNS-JU research projects®.

However, the rapid growth of Al and ML research in the realm of smart networks and services has led
to a fragmented and often unclear landscape. In many cases, terminology is used in an inconsistent
manner, contributing to confusion and misalignment across different domains. Meanwhile,
development and standardization efforts remain loosely coupled, with various initiatives often
working in isolation or silos. Additionally, the widespread availability of Al/ML tools and platforms has
fostered an “Al/ML for everything” approach without clear guidance on Al/ML most effective uses.
This dynamic calls for a critical revisit of the foundational aspects of Al/ML in the context of networks,

with a structured approach to better understand the current state of play.

This document serves as a primer that clarifies key Al/ML terminology, summarizes major current
standardization efforts, and explores open implementations and innovation pathways. It provides a
foundational resource for researchers, industry stakeholders, and policymakers, with the primary goal
of aligning efforts and accelerating the development of Al-native networks and systems, particularly

within the framework of SNS-JU research projects.

1 https://artificialintelligenceact.eu/

2 https://digital-strategy.ec.europa.eu/en/library/white-paper-how-master-europes-digital-infrastructure-needs

3 https://smart-networks.europa.eu/wp-content/uploads/2023/12/sns-ju-sria-2021-2027-second-edition-2023.pdf
4 https://6g-ia.eu/wp-content/uploads/2024/11/european-vision-for-the-6g-network-ecosystem.pdf

5 https://smart-networks.europa.eu/wp-content/uploads/2025/02/ai_ml_white-paper-sns_tb_v1.0.pdf
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2 Al AND ML TAXONOMY

In research and innovation activities, various Al related terms are used, and many others are coined
frequently, which sometimes creates a confusion of the actual content that each term describes. In
this context, it has been noticed that Al is used interchangeably with the ML term, which makes things
even more complex. Indeed, while Al refers to technologies that enable machines to mimic human
intelligence for decision making and problem solving; ML is the toolbox used to achieve this behaviour.
Hence, ML refers to the methods/algorithms/processes that enable machines to learn, i.e., to improve
them in solving specific tasks with experience [1]. Given this separation of the Al and ML terms, a
reference catalogue is provided, containing key definitions and concepts related to Al and ML, with

an emphasis on their application to the communication networks domain.

2.1 Al — A reference catalogue of terms and concepts

Al-Native systems. It is one of the most widely used terms recently coined to refer to the case where
Al is an intrinsic part of a system. There are various analyses and more focused definitions on this; the

following are considered among the most representative ones:

= Ericsson®: "Al native is the concept of having intrinsic trustworthy Al capabilities, where Al is
a natural part of the functionality, in terms of design, deployment, operation, and
maintenance. An Al native implementation leverages a data-driven and knowledge-based
ecosystem, where data/knowledge is consumed and produced to realize new Al-based
functionality or augment and replace static, rule-based mechanisms with learning and
adaptive Al when needed.”

» |TU-T’: Al-native networks refer to a new paradigm where Al is not merely an add-on feature
but is deeply embedded in the core architecture, enabling unprecedented levels of
automation, optimization, and intelligence. These networks will be capable of self-
management, self-optimization, and even self-repair, allowing them to meet the demands of

future applications that require high agility, precision, and speed.

Al model is a program/algorithm that has been trained on a set of data to recognize certain patterns

or make certain decisions without further human intervention. Artificial intelligence models apply

6 https://www.ericsson.com/en/reports-and-papers/white-papers/ai-native

7 https://www.itu.int/en/ITU-T/focusgroups/ainn/Pages/default.aspx
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different algorithms to relevant data inputs to achieve the tasks, or output, they’ve been programmed

for.

Al agent?® is a component designed to handle tasks and processes with a degree of autonomy within a
system or network. In the literature various types of agents have emerged, including Goal based
agents, Simple Model-based reflex agents, Utility based agents, and Learning Agents. These agents
replace traditional Operations and Maintenance (O&M) engineers by performing reactive behaviours
(e.g., responding to real-time network stimuli) and proactive behaviours (e.g., anticipating risks,

setting new goals, and self-optimizing operations).

Human Environment (O&M engineers) Agent Environment (other agents)
E E AN AN | [ AN AN
i |Agent||Agent | |Agent||Agent] "
T Interacticn I Interaction
A 4 y
Human-Agent Interaction Agent-Agent Interaction
User Interface Knowledge | Global Awareness
Problem Solvers “ Goal Coordination
T Intent
Knowledge - Self Awareness
Agent Purpose
! N g p
B Intent Management
World Knowledge Agent state 9
* General Knowledge <t [Constraint l Meta-goal

» Agent-Specific Knowledge Choice Making
- Meta-goal |_. Meta-goal Management

[ Y

/Constraint
Knowledge Choice of Geals
New goal
z Goal l

Situation Awareness » Decision Making

Reflection « _ Goal Management

. Goal /State
Perception Planner

AN Agent

Network Environment (controlled networks)
Input _ i Qutput
A B Dep R

Figure 1: A representative reference architecture of an Autonomous Network agent [2]

Focusing on agents for Autonomous Networks (AN) (see Figure 1), they contain processes, such as:

Situation Awareness, Decision-Making, Self-Awareness, Choice-Making, and World Knowledge/ A

8 https://www.ibm.com/think/topics/ai-agent-types
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shared memory system containing domain-specific ontologies, operational rules, and learned
expertise. Importantly, agents interact with both humans and other agents through Human-Agent
Interaction (HAI) and Agent-Agent Interaction modules, forming a hierarchical, multi-agent ecosystem
spanning business, service, and resource network layers. The report situates agentic Al as the next
step beyond automation and ML, capable not only of predicting or classifying but also reasoning about
goals, intents, and constraints. It contrasts narrow Al components (predictors, analyzers) with agentic
systems that embody cognition, purpose, and ethical decision-making, emphasizing trust, runtime

assurance, and human alignment.

Agentic Al° refers to an autonomous system that can make decisions and perform tasks without
human intervention. In the network domain Agentic Al enables autonomous, self-learning, and self-
optimizing networks by actively interacting with the “environment”, learning from data, and making
real-time decisions. The “environment” could be databases, LLM systems, observability tools,
knowledge systems, etc. From the various ML tools Agentic Al mainly takes advantage of
Reinforcement Learning (RL) to learn optimal actions by balancing exploration (using new strategies)
and exploitations (using known strategies), receiving rewards or penalties based on its actions. In the
literature, Agentic Al is defined in operational terms, as the technological foundation that allows an

autonomous network agent to sense, reason, and act across dynamic network environments [2].

Large Language Models (LLMs). LLMs (e.g., GPT, Claude, Mistral) are pretrained in a vast amount of
factual knowledge, usually from publicly available data sources. They enable agentic Al to understand,
generate, and respond to natural language requests. In Europe, OpenEUROLLM??, promises a series of
foundation models for transparent Al in Europe, while the LLMs4EU project® focuses on training LLMs
to ensure their conformity to European legislation (Al Act, GDPR, etc.). Integral to the LLMs
architecture is considered the Retrieval-augmented generation (RAG) pattern for retrieving external
data from a vector database at the time a prompt is issued. The prompts can be issued as “Intents”
refer to expressions of objectives (or requirements) describing “what” to achieve. Then the system
enables the mechanisms needed for realising the “HOW”. LLM and ChatBots and used (among others)

to realize intent-based interfaces/intent handlers.

Multi-agent Systems (MAS). MAS consists of multiple autonomous agents that interact and
collaborate to perform complex tasks. While each operates independently, they can communicate,

share and access a common knowledge base, and coordinate actions. In the context of Multi-agent

9 https://www.confluent.io/learn/agentic-ai/
10 https://openeurolim.eu/

11 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/projects-details/43152860/101198470
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Reinforcement learning (MARL) has been proposed as a technique for decision making in a shared
environment, which involves multiple autonomous agents. Practically, MARL aims at maximizing

cumulative rewards through interactions among the agents.

Generative Al (GenAl) uses Al to create content, including text, video, code and images. A generative
Al system is trained using large amounts of data, so that it can find patterns for generating new
content. Related architectures, such as Generative Adversarial Networks (GANs), Variational
Autoencoders (VAEs), Autoregressive models, Diffusion models, and Flow matching models, are
poised to play a transformative role in the design, optimization, and automation of 6G networks.
Unlike traditional discriminative models, GenAl focuses on modelling complex data distributions,
enabling the synthesis of high-fidelity data, emulation of network dynamics, and the creation of
intelligent digital agents. This trend is also reflected in the literature. In [3] candidate 6G applications
and services are studied, presenting a taxonomy of state-of-the-art Discriminative Al (DAI) models,
exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAl
enhances DAI. In addition, in [4] the role of GenAl in the evolution of 6G networks is studied. An in-
depth discussion of notable GenAl models is presented, outlining their application in enhancing key
network components in technologies like Reconfigurable Intelligent Surfaces (RIS), Unmanned Aerial

Vehicles (UAVs), Digital Twins (DTs), and Integrated Sensing and Communications (ISACs).

Explainable Al (XAl) is a set of processes and methods that allow human users to comprehend and
trust the results and output created by machine learning algorithms'?. The setup of XAl techniques
include prediction accuracy, traceability, and decision understanding. As 6G networks increasingly
incorporate intelligence across mission-critical functions from autonomous orchestration to real-time
security the interpretability and transparency of these models become paramount. Explainable Al
addresses this need by making Al decisions understandable to human operators, developers, and
regulators. In traditional networks, decisions follow deterministic rule sets, sometimes using black-
box models which make decisions difficult to interpret. XAl provides model-level (intrinsic) and post-
hoc (extrinsic) interpretability methods such as Shapley Additive Explanations (SHAP), Local
Interpretable Model-agnostic Explanations (LIME), saliency maps, and attention mechanisms [5].
Focusing on network processes, XAl is relevant to many use cases, since it enables the ability to
enhance transparency and reliability in scenarios requiring real-time decision-making and high-stakes

operational environments [6].

12 IBM definition
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2.2 ML - Fundamental types for network optimisation

ML-based optimization algorithms with respect to the classical methods has been proposed with
insightful guidance to develop advanced ML techniques in 6G networks [7]. There are three main types

of learning: Supervised Learning, Unsupervised Learning and Reinforcement Learning.

= Supervised Learning. A category of ML that uses labelled datasets to train algorithms to

predict outcomes and recognize patterns. Supervised learning includes methods like: Decision
Trees, Naive Bayes, Support vector machine, Random Forest, Neural Networks, Linear
regression, Logistic Regression, and K-Nearest Neighbour).

=  Unsupervised Learning. A category of ML where unlabelled data is provided and

patterns/insights are discovered without any explicit guidance or instruction. Unsupervised
learning includes methods like: K-Means, Principal Component Analysis, and Singular Value
Decomposition.

= Reinforcement learning (RL) 3 1. In RL, an agent learns to make decisions by interacting with
an environment (it mimics the human trial-and-error learning process). RL includes policy and
value-based RL methods, where value-based ones include Dynamic Programming, Monte
Carlo, and Temporal Difference approaches. The well-known method in this category is Q-

Learning.

In the literature, those fundamental types of learning have been studied extensively. For instance, in
[8] a taxonomy of supervised and unsupervised models is provided highlighting their relevance to
Quality of Service (QoS) prediction, network anomaly classification, and user profiling in dense
wireless environments. Also, RL has been used for resource allocation, spectrum sharing, access point
selection, and load balancing, since their inherent adaptability makes them suitable for real-time
control in ultra-dense heterogeneous 6G deployments. Another example is the use of RL for Physical
Layer (PHY) cross-layer security and privacy protection against with jammers, eavesdroppers, spoofers
and inference attackers [9]. Beyond the fundamental types, various ML approaches and concepts have

been coined.

Neural networks are complex supervised learning methods and rely on training data to learn and
improve their accuracy over time. However, those methods have received a lot of attention since it
mimics the way biological neurons work together to identify phenomena, weigh options and arrive at

conclusions. Neural network consists of layers of nodes, or artificial neurons, one or more hidden

13 https://arxiv.org/pdf/2209.14940

14 https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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layers, and an output layer. Each node connects to others and has its own associated weight and
threshold. If the output of any individual node is above the specified threshold value, that node is
activated, sending data to the next layer of the network. Otherwise, no data is passed along to the
next layer of the network. Neural networks have paved the way from traditional machine learning

towards Deep Learning.

Deep learning (DL) is a learning method which uses hundreds or thousands of layers of a Neural
Network to train its models. This category is further highlighted since GenAl systems are mainly based
on DL techniques. Convolutional neural networks (CNNs), Recurrent Neural Networks (RNNs),
Autoencoders and VAEs, and GANs are some examples of Neural Networks used for DL. In the network
optimisation domain, CNNs are particularly effective in Channel State Information (CSI) prediction,
interference classification, and beamforming optimization, while RNNs and their variants are suited
for modelling temporal correlations in mobility prediction, traffic forecasting, and adaptive control of
network services. At the PHY and Media Access Control (MAC) layers CNN/RNN are used for channel
estimation and scheduling, emphasizing their capability for generalization in non-stationary wireless
environments [10]. A detailed vision for DL in 6G is presented in [11], emphasizing areas such as
adaptive resource allocation, intelligent network management, robust signal processing, ubiquitous

edge intelligence, and endogenous security.

Deep Reinforcement Learning (DRL) is an expansion of the RL paradigm where DL (practically deep
neural networks) are used to approximate functions (like value functions or policies) that would be
too complex to model otherwise. DRL algorithms have been used for realizing resource (and slice)

management autonomously [12].

Lastly, the protection of the training data and the need to keep them distributed into various places
brought the concept of Federated learning (FL). In Federated learning, instead of transferring data to
a central point to train a model, models are trained locally where the data resides and then the models
are passed to a central federation unit. In the networks domain FL addresses privacy and scalability
challenges (by design) by enabling distributed learning across edge devices without centralizing data.
It has been proved pivotal technique in 6G for vehicular networks, Internet of Things (1oT) sensor grids,
and user-centric service customization. Also, the decentralized training paradigm of the FL approach
aligns with the edge-native architecture of future networks. Indeed, as shown in [13], FL applies
efficiently in distributed edge intelligence and secure model training, particularly under limited
communication and computation resources. In the security domain, vulnerabilities and security

threats in FL have been explored [14].
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3 COMMON & STANDARD Al/ML APPROACHES

This section delves into the common and standardized approaches for integrating Al/ML into smart
networks and services, with a focus on frameworks developed by leading organizations such as 3GPP,
ITU-T, O-RAN, and ETSI. It outlines the operational workflows, lifecycle management, and
trustworthiness indicators for Al/ML models, emphasizing modularity, interoperability, and dynamic
adaptation. The section highlights the role of Al/ML in enabling automation, optimization, and
autonomy in next-generation networks, while addressing challenges like data handling, model
deployment, and performance monitoring. These frameworks serve as foundational pillars for

advancing Al/ML-driven innovation in 6G networks.

3.1 3GPP AlI/ML Management Framework for 5G Systems

The integration of Al/ML capabilities into 5G and beyond networks has emerged as a key enabler for
automation, intelligence-driven optimization, and dynamic service provisioning. Within 3GPP, a
comprehensive set of studies and specifications (primarily 3GPP TR 28.908% and 3GPP TS 28.105¢)
have formalized a reference architecture and management framework that addresses the lifecycle of
Al/ML entities within 5G System (5GS) environments. This section details the architectural principles,
lifecycle operations, and management services that underpin the 3GPP approach to Al/ML integration

in 5G and beyond networks.
3.1.1.1 AI/ML Operational Workflow

The operational integration of Al/ML within 5G networks is governed by a clearly defined lifecycle
model that includes the phases of training, emulation, deployment, and inference. Each phase is

associated with a set of functional requirements and management responsibilities.

The training phase represents the starting point, where raw or pre-processed data is used to produce
or update ML models. This process involves both initial training and retraining, followed by validation
to assess generalization on unseen data. If the variance in performance between training and

validation datasets is unacceptably high, retraining is triggered.

Following training, an optional emulation phase allows the operator to simulate the performance of
an ML entity in a controlled, virtual environment. This phase is particularly useful for assessing

inference behaviours prior to live deployment, minimizing operational risk.

15 https://www.etsi.org/deliver/etsi_tr/128900_128999/128908/18.00.00_60/tr_128908v180000p.pdf
16 https://www.etsi.org/deliver/etsi_ts/128100_128199/128105/17.04.00_60/ts_128105v170400p.pdf
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In the deployment phase, the validated ML model is loaded into the Al/ML inference function that
will consume it. The deployment process includes mechanisms for version control, rollback strategies,

and integration with multi-vendor network environments.

Finally, during the inference phase, the ML model is used to support real-time or near-real-time
decision making. Inference may operate continuously or be triggered by specific events or policies,

and the inference results are monitored for quality and performance

As illustrated in Figure 2, this lifecycle model is adaptable to various types of learning, including
supervised, unsupervised, and RL. For instance, RL may allow inference to begin concurrently with

training, whereas supervised models require training to complete beforehand.

Training Deployment Inference
phase phase phase

- . Al/ML Al/ML
ML Training D ML Testing DEp|DVI11EI'"‘-

—> Sequence of the flow

Figure 2: Al/ML operational workflow across training, deployment, and inference phases.
3.1.1.2 Training Phase Management

The training phase is central to Al/ML lifecycle management, and the 3GPP framework includes
detailed provisions for initiating, controlling, and monitoring training activities. Operators or
Management Service (MnS) consumers'’ may initiate training manually or define policies that trigger
retraining automatically, for instance, in response to deteriorating inference performance or detected

data drift.

Validation is a required subprocess that evaluates the model's behaviour on a held-out validation
dataset. If the model underperforms or demonstrates signs of overfitting, it is returned to the training
phase for further tuning. Testing then follows, using a separate test dataset to evaluate the model's

robustness and suitability for operational deployment.

17 Based on the 3GPP’s management architecture, an operator is the entity that manages the network, and within that system, various
components or external entities can act as MnS (Management Service) consumers, which are the clients that use the services provided by

MnS producers.
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To ensure quality training, the framework supports a range of capabilities such as monitoring training
data effectiveness, correlating measurements with training outcomes, and aggregating information-
rich events from multiple sources. Notably, the event-based training mechanism allows models to be
trained on high-quality events derived from raw network telemetry, reducing storage needs and

increasing data relevance.
3.1.1.3 Emulation Phase Management

The emulation phase ensures model reliability before production deployment. It allows the ML model
to be evaluated under conditions that simulate the target network environment. Emulation may be
invoked on demand by the MnS consumer, who can configure parameters such as duration, load

profiles, and expected performance thresholds.

During this phase, the inference function is exercised in a controlled context, and results are recorded
to evaluate behaviour under expected and edge-case scenarios. The ability to emulate inference
workflows supports scenarios such as resource allocation, anomaly detection, and performance

prediction, where operational mistakes could lead to degraded service.

The emulation capability adds a valuable safety layer, especially for use cases involving mission-critical

services or stringent Service-Level Agreements (SLAs).
3.1.1.4 Deployment Phase Management

Deployment of trained models is a managed process that includes model transfer, integration, and
activation within the target inference function. The 3GPP framework provides mechanisms for model

registration, version tracking, and policy-based deployment.

Operators are informed when new ML entities become available, and policies can be defined to trigger
automatic deployment. These policies may consider factors such as network load, model
performance, or update intervals. Monitoring tools allow visibility into deployment progress and can

detect anomalies or errors during the activation process.

In complex networks with distributed components (e.g., edge clouds, RAN, core), deployment
orchestration becomes essential. The framework supports both centralized and decentralized

deployment models, depending on the architectural configuration of the network domain.
3.1.1.5 Inference Phase Management

Inference represents the operational phase where trained models are applied to real-time data for
decision-making. This phase is tightly controlled to ensure reliable outcomes and minimize the risk of

erroneous predictions.
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Operators can configure inference activation manually, via schedule, or through policy-based
mechanisms. For example, a model may be activated only during high-traffic periods or in specific
geographical regions. Partial activation (e.g., A/B testing) is supported, allowing safe experimentation

with new models.

Inference results are continuously monitored using Key Performance Indicators (KPIs) such as
accuracy, latency, and explainability. The framework also supports the dynamic orchestration of
multiple inference functions, enabling adaptive behaviour based on service needs or environmental

conditions.
3.1.1.6 Trustworthiness and ML Entity Abstraction

Trustworthiness is an essential requirement in Al/ML operations, particularly in critical infrastructure
such as telecommunications. The 3GPP framework incorporates trust-related indicators across all

operational phases, including fairness, robustness, interpretability, and data integrity.

The concept of the ML entity abstracts the model and its associated metadata (e.g., training history,
version, context, trust scores). This abstraction enables vendors and operators to exchange and

manage models without disclosing sensitive internal architectures, thus ensuring interoperability and

security.
Indicators to evaluate trustworthiness
on the data provided to Al/ML processes Indicators to evaluate trustworthiness
. of the AI/ML Training and testing
i E processes
vl |
"I Training, o
validation &
Data Testing
Collec;ion Indicatorsto evaluate trustworthiness
il of the AI/ML Training process
Processing ) ;
> @D v
— —p - R 4
Inference

Figure 3: ML trustworthiness indicators.
To manage trustworthiness throughout the Al/ML lifecycle, the framework introduces a set of
evaluative metrics and processes. These include assessments of data bias, model explainability,
decision traceability, and adherence to regulatory and ethical constraints. Each ML entity carries its
own metadata bundle describing the trust indicators applicable during training, emulation,

deployment, and inference.
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This approach is encapsulated in Figure 3, which highlights the layered structure of an ML entity, its
management interfaces, and the associated trustworthiness dimensions. The model-centric
encapsulation ensures that both operators and vendors can monitor, evaluate, and configure Al/ML
functions in a controlled and accountable manner without requiring access to proprietary internal

mechanisms.

3.2 ITU-T Frameworks for ML

The ITU-T Y.3172* architectural framework provides guidelines for integrating ML into future
networks, addressing key challenges such as heterogeneous data sources, integration costs, and the
alignment of ML functionalities with evolving network architectures. It defines a modular ML pipeline
composed of logical nodes. The pipeline begins with the source (SRC) node, where data is generated,
typically by user equipment or network nodes. This data is then aggregated by the collector (C) node
to form a unified dataset. The preprocessor (PP) cleans and formats the data to meet ML input
requirements. At the core of the pipeline, the model (M) node applies ML algorithms for tasks such as
classification or regression. To ensure network compliance, the policy (P) node enforces operational
rules, while the distributor (D) delivers the outputs to appropriate network nodes. Finally, the sink
(SINK) node applies these ML outputs, often in the form of adaptive configurations or real-time

network adjustments.

The framework is orchestrated by the ML Function Orchestrator (MLFO), a logically centralized entity
responsible for coordinating the ML pipeline components, as depicted in Figure 4. The MLFO provides
chaining of ML nodes to form complete pipelines and coordinates with the management subsystem
to facilitate optimal model selection, deployment, and performance monitoring. This coordination
supports dynamic adaptation to evolving network conditions and ML objectives (known as ML intent).
Additionally, the framework may include an ML sandbox, a controlled environment for training,
testing, and evaluating ML models, which isolates the impact of ML implementations on operational

systems while allowing the use of simulated and real-world data to refine the models.

To support next-generation networks, the framework defines key architectural requirements such as
correlating data across heterogeneous sources (e.g., RAN and CN), enabling a unified network view. It
promotes flexible deployment and chaining of ML functions, coordinated with management
subsystems for optimized performance. The framework also ensures interface interoperability

through Application Programming Interface (APl) recommendations and supports declarative ML

18 https://www.itu.int/rec/T-REC-Y.3172-201906-I/en
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application indications to simplify configuration and adapt to dynamic network conditions. This
framework is designed to support a wide range of use cases by enabling the dynamic placement of ML
functionalities. For example, strategic deployment of ML components can facilitate network
optimization through efficient traffic management and resource allocation, thereby supporting near-
real-time, data-driven decisions that enhance QoS. Additionally, while the framework provides
guidance on interfacing with ML functionalities, any integration of third-party ML solutions would

require further adaptations by network operators.

ML sandbox

ML pipeline

1 = | | | W | | | | o | | W | | | f
Ll d o d ol d
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Figure 4: High-level architectural components of ITU-T framework.

On the other hand, the ITU-T Y.3174% recommendation extends the Y.3172 architectural principles by
introducing a framework for managing the ML data lifecycle in IMT-2020 networks. It ensures
consistent, real-time data handling across heterogeneous sources through timestamp alignment,
coordinated flows, and retention policy enforcement. Designed for scalability, it supports both
simulated and real-world data, minimizes latency for time-critical applications, and enables secure,
adaptive application of ML outputs across the network. As shown in Figure 5, the framework defines
key components for ML data handling. Data Models (DMs) specify data format, semantics, and

exchange rules. The ML Metadata Store centrally manages DMs and their associated APIs to ensure

19 https://www.itu.int/rec/T-REC-Y.3174-202002-I/en
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consistency and reusability. The ML Data Broker operates across the control and user planes (DBr-CP,
DBr-UP) to translate and map data between ML overlays and underlying network components. The
ML Database (MLDB) provides structured storage and retrieval capabilities for ML-related data,
supporting both training and real-time applications. Additionally, standardized interfaces, such as API-
g and API-s, abstract the requirements of ML applications (API-g) and map them to network-specific

implementations (API-s), ensuring interoperability and scalability.
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Figure 5: High-level architecture of the data handling framework.

The framework sets high-level requirements for heterogeneous data collection, real-time
synchronization, and regulatory compliance. It supports scalable processing, seamless dataset
integration, and low-latency optimization, with secure, adaptable data output across all network
levels. It enables a wide range of use cases, including dynamic resource allocation, energy-efficient
configurations, mobility prediction, and network optimization. It also supports real-time decision-

making, fault detection, and service quality enhancement.

The ITU-T framework includes several functionalities for supporting Al/ML operations, including the
modular ML pipeline, the sequence of logical nodes, as well as the overlay Al/ML functions that can

be deployed. Moreover, the general architectural considerations of the Al/ML framework imply that
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is intended to work in a Service Based Architecture (SBA), including also functionalities related to

algorithmic design and collaborative learning.

3.3 The O-RAN Al/ML Framework

O-RAN has proposed an Al/ML framework (AIMLF)? to support the ML models is depicted in Figure 6.
The framework includes a portal to provide access to the end user, as well as a training manager that
is the entity responsible for communicating with the Data Management and Exposure Services (DME)
of the Non-RT RIC and performing the necessary operations to gather the training data. Moreover,
there are two different platforms: the Al training host platform (ATHP) that is included in the logical
architecture of the AIMLF and the Al Inference host platform (AIHP) that is deployed either in the Non-
RT RIC or the Near-RT RIC. The former’s internal architecture enables the platform to gather the
training data, as well as to process them, extract the important features, follow the training pipeline
and store the ML models in a model database. The AIHP is directly deployed to the network entity that
will host the trained ML model, i.e., the Non-RT RIC or the Near RT RIC and serves as the model serving
component, performing the required onboarding before deploying the inference service. It should be
noted that the deployment location of the Al training functions may vary according to the diverse

requirements of the use cases. Furthermore, O-RAN has also proposed a performance monitoring
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20 https://If-o-ran-sc.atlassian.net/wiki/spaces/AIMLFEW/overview

21 https://research.samsung.com/blog/Enabling-Intelligent-RAN-Framework-in-O-RAN
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The performance monitoring consists of a monitoring server connected to the ATHP and a monitoring
agent that is deployed in the hosting network component (Near-RT RIC). In addition, performance
analysis functions can be included in order to conduct post-processing analysis of the ML model
performance. The end user (network operator) can connect through the portal to the performance

monitoring system and retrieve information of the operating ML models.

The above monitoring process assumes that KPls are stored as time series in an InfluxDB by a
monitoring xApp (KPIMon), as well as the input/output of ML xApps (or request and response data
from assist xApps). The implementation view of the O-RAN performance monitoring framework in the

AIMLF is depicted in Figure 7.
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Figure 7: Implementation view of Monitoring in the AIMLF - components and interfaces.

The purpose of the performance monitoring functionality is to detect the degradation in the

performance of the ML models that are operating in the RICs and avoid decline in the service quality.

Depending on the use case or the aim of the ML model, three general categories of analysis modules

can be discerned:

e Analysis of ML models input/output and trend. Noteworthy, this analysis does not depend
on the performance of the ML model itself but aims to detect drift by comparing actual and
training inputs statistical properties. When a data drift is detected, ML model re-training may
be needed.

e Inference Accuracy of predictive models. The inference accuracy of predictive ML models can
be assessed analysing actual and predicted values. A degradation in performance is then
detected when the actual inference accuracy differs from the required one.

e MlL-based Control Apps. In the case of decision-making ML models, the network operator can

assess the ML model performance indirectly through the impact on the network environment
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of the RIC control messages (i.e., the ML model decisions). By tracking the temporal variation
of KPIs collected from the network environment, the operator can decide upon the need for

model retraining.

3.4 The ETSI perspective: Al as Network Autonomy Catalyst

ETSI positions Al as the driving enabler toward ANs, where networks exhibit 5 levels of autonomy,
namely self-learning, self-protection, self-healing, self-optimization, and self-configuration, as shown
in Figure 8. Although autonomy can conceptually exist without Al, the organization recognizes that Al
accelerates the path to full network autonomy and acts as the foundation for zero-touch, intent-driven

operations.

Self-
configuration

Self-optimization

Autonomous
Network
Management

Self-healing

Self-protection

Self-learning

Figure 8: Al-enabled Self-X capabilities driving Autonomous Networks [15].

The current focus within ETSI is to achieve AN Level 4, the stage where networks operate with minimal
human intervention, before progressing to complete autonomy [15]. This evolution promises
operational cost reduction, sustainability gains, and new digital service opportunities. The integration
of Al technologies such as Network Digital Twins (NDTs), GenAl, Al Agents, and intent-driven APlIs is
seen as critical to transforming service management and enabling digital transformation across

sectors.

ETSI’s work in this area involves Technical Committees (TCs), Industry Specification Groups (I1SGs), and
Software Development Groups (SDGs), each contributing domain expertise, spanning 5G/6G, Network
Function Virtualization (NFV), Zero-Touch Network and Service Management (ZSM), Experiential
Networked Intelligence (ENI), Fifth Generation Fixed Networks (F5G), Securing Artificial Intelligence

(SAl), and software orchestration platforms such as TeraFlowSDN and OpenSlice.
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3.4.1 Related ETSI Industry Specification Groups (ISGs)

ISG Experiential Networked Intelligence (ENI)

ETSI ISG ENI provides cognitive frameworks for closed-loop decision making in network operations.

Recent achievements (Release 4) include:

ETSI GS ENI 005 — Functional architecture incorporating cognitive networking, GenAl, and
semantic policy models.

ETSI GS ENI 019 — Models, interfaces, and APIs for representing and inferring network
knowledge.

ETSI GR ENI 051 — Agentic Al model introducing Al agents capable of reasoning, adaptation, and
collaboration.

Deliverables defining autonomy levels for IP and data-centre networks (GR ENI 007, 010, 035,
049).

ENI maintains 23 Proof-of-Concepts (PoCs) demonstrating Al-enabled decision loops in diverse

network environments, including satellite-terrestrial cooperation. The work aligns with 6G ambitions,

focusing on Al-native management, knowledge representation, and cognitive orchestration.

ISG Zero-Touch Network and Service Management (ZSM)

ZSM defines the architectural and operational foundations for Al-driven zero-touch automation. Key

frameworks are listed below:

Intent-driven closed-loop control using RL for dynamic resource optimization.

NDT integration as analytics services for prediction, risk assessment, and visualization.
Hierarchical closed loops (OODA-based) operating across micro to macro timescales for multi-
domain optimization.

XAl governance, employing blockchain-anchored audit logs to ensure traceability and

accountability.

PoC validations include:

Intent-driven RAN energy optimization (Deutsche Telekom, Huawei).
Cloud AR/VR service deployment using CAMARA APIs (Telefdnica).
Explainable closed-loop management (EURECOM).

Intent-based RAN resource management (NTT DOCOMO).

ISG Network Functions Virtualisation (NFV). ISG NFV Release 6 redefines telco clouds from cloud-

native to Al-native systems, introducing the dual paradigm of:

Al4Cloud — Using Al to enhance fault diagnosis, performance optimization, and OAM

automation.
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e Cloud4Al — Leveraging heterogeneous cloud resources (GPU, TPU, DPU) to support Al
workloads and model training.
New studies explore:
e Serverless computing and WebAssembly (WASM) to improve Al application portability.
e Model-as-a-Service (MaaS) for deploying Al components in NFV ecosystems.

e XxPU-enhanced infrastructures for Al acceleration.

ISG Fifth Generation Fixed Networks (F5G). ETSI ISG F5G extends Al-driven autonomy to fixed access
and optical networks. Recent specifications (Release 3) include:

e GRF5G 019 - Fixed Network Autonomous Level Definition.??

e GSF5G 024 - F5G Advanced Architecture.?

e GSF5G 027 — End-to-End Management and Control.
Al supports closed-loop control, fault prediction, and QoE-aware optimization across fiber networks,

bridging packet-optical integration and advancing toward F5G Advanced/5.5G evolution.

3.4.2 Related ETSI Technical Committees (TCs)

TC Securing Artificial Intelligence (SAl)

TC SAl focuses on trustworthy Al, addressing transparency, explainability, and adversarial robustness.
Key deliverables:
e ETSITS 104 224 — Explicability and transparency of Al processing (2025).2*
e Ongoing work on Al auditing, ethical compliance, and continuous validation for Al decision
traceability in networks.
SAl ensures that Al systems comply with EU Al Act principles, emphasizing secure model deployment,

data privacy, and lifecycle management.

TC Methods for Testing and Specification (MTS)

MTS ensures quality and interoperability in autonomous systems. Innovations include:
e Model-based testing for Al-enabled behaviors.
e Al-driven test generation and runtime verification of closed loops.
e Development of ETSI TR 103 910% and TS 104 008, providing standardized test methodologies

and KPlIs for trustworthiness, robustness, and performance.

22 https://www.etsi.org/deliver/etsi_gr/F5G/001_099/019/01.01.01_60/gr_f5g019v010101p.pdf
23 https://www.etsi.org/deliver/etsi_gs/F5G/001_099/024/01.01.01_60/gs_f5g024v010101p.pdf
24 https://www.etsi.org/deliver/etsi_ts/104200_104299/104224/01.01.01_60/ts_104224v010101p.pdf
25 https://www.etsi.org/deliver/etsi_tr/103900_103999/103910/01.01.01_60/tr_103910v010101p.pdf
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TC INT/AFI — Autonomic Management and Control

This group advances the GANA (Generic Autonomic Networking Architecture) model, focusing on
cross-domain autonomy, policy-based self-management, and Al-enabled fault detection in multi-

domain 5G and beyond networks.

3.4.3 ETSI Software Development Groups (SDGs)

ETSI TeraFlowSDN develops Al-ready SDN orchestration for multi-layer packet-optical control. PoCs
demonstrate intent-based orchestration, Digital Twin-assisted automation, and closed-loop service

assurance.

SDG OpenSlice (OSL) implements Network-as-a-Service (NaaS) delivery with Al-enabled intent
translation. Utilizes GenAl to convert business intents into technical configurations and integrates

multiple controllers for E2E lifecycle management.
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4 OPEN IMPLEMENTATIONS AND TOOLS

This section explores open implementations and tools that support the integration of Al/ML into smart
networks and services. It highlights the role of industry associations, open-source projects, and
emerging multi-agent communication protocols in enabling interoperability and intent-based
orchestration. It also introduces the concept of MLOps, which ensures reliable, scalable, and
governable ML operations in dynamic environments. Tools like MLflow are presented as key enablers
for managing the end-to-end lifecycle of ML models, addressing challenges such as fragmentation,

governance, and sustainability in 6G networks.

4.1 Industry associations and open-source projects

The TM Forum [16] provides a detailed view of how agentic Al plays a central role in the evolution
toward fully autonomous network operations. It discusses how Communication Service Providers
(CSPs) are moving from traditional automation (rule-based systems) to Al-enabled autonomy, where
intelligent systems reason, act, and adapt with minimal human intervention. The report emphasizes
that Level 4 ANs represent a shift from “prescriptive supervision” (humans defining procedures) to
“declarative, delegated autonomy,” in which Al does the reasoning. This embodies the essence of
agentic Al: systems that can interpret human intent, make decisions, and execute actions across
network domains autonomously. Al is embedded throughout the network lifecycle, from planning and
orchestration to assurance and optimization, thus enabling intent-based, closed-loop management.
These systems sense network conditions, reason over multi-domain data, and act dynamically to self-
heal, self-optimize, and self-adapt, which aligns directly with the core attributes of agentic Al systems.
The report also explores the growing integration of GenAl and multi-agent collaboration in network
operations. GenAl is seen as an enabler of agentic workflows, where LLMs assist in decision-making,
generate network configurations, support troubleshooting via natural language, and even build DT of

the network.

In the same context, the telecommunications industry is undergoing a profound transformation as 5G
networks architecture matures, Telcos are increasingly exposing their core capabilities through
standardized APIs, notably via the GSMA Open Gateway initiative?® and CAMARA? . These APIs aim
to simplify access to network functions such as SIM swap detection, QoS management, and device

location, enabling third-party developers to build applications that leverage real-time network

26 https://www.gsma.com/solutions-and-impact/gsma-open-gateway/

27 https://camaraproject.org/
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context. However, this API-first approach inherits several structural limitations [17] Current network
APIs are typically stateless, synchronous, and isolated, requiring the client to know exactly which
capability to invoke and when. They offer little in terms of intent-based orchestration, persistent
context, or adaptive negotiation, properties that are rapidly becoming essential as the software
ecosystem shifts toward autonomous, goal-oriented agents. Those agents need to operate
continuously, remember prior state, and adapt their behaviour to changing environments, including

the underlying network.

4.2 Multi-Agent Communication Protocols

Stateless APl interfaces are fundamentally misaligned with the new class of software that the Al agents
introduce, and thus there are also discussions on approaches like the ones provided by Multi-Agent
Communication Protocols. Model Context Protocol (MCP), Agent Communication Protocol (ACP),
Agent-to-Agent Protocol (A2A), and Agent Network Protocol (ANP), are Multi-Agent Communication
Protocols addressing interoperability in distinct deployment contexts. MCP provides a JSON-RPC
client-server interface for secure tool invocation and typed data exchange. Specifically for the Telco

Networks, MCP introduces four key innovations over traditional Telco APIs [17]:

1. Session Persistence: sessions maintain memory across time, allowing agents to interact
contextually rather than through repeated one-shot calls.

2. Intent Negotiation: Agents declare high-level goals, and the network responds with available
options, pricing, or fallback mechanisms.

3. Context Subscription: Agents can subscribe to real-time network state changes (e.g.,
congestion, user movement), enabling proactive adaptation.

4. Monetization by Session or SLA: open the door to new pricing models, including real-time

QoS auctions, session-based SLAs, or priority bandwidth tiers.

ACP introduces REST-native messaging via multi-part messages and asynchronous streaming to
support multimodal agent responses. A2A enables peer-to-peer task outsourcing through capability-
based Agent Cards, facilitating enterprise-scale workflows. ANP supports open-network agent
discovery and secure collaboration using decentralized identifiers (DIDs) and JSON-LD graphs. The
protocols are compared across multiple dimensions, including interaction modes, discovery
mechanisms, communication patterns, and security models. Table 1 below summarizes the related

protocols.
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Table 1: Multi-Agent Communication Protocols.

Protocol Arch.& Transport Sec.& Identity  Key Capabilities

MCP (Model Context Anthropic | Client-Server, JSON- User consent- Connects models to

Protocol) RPC driven external tools

A2A (Agent-to-Agent Google & | Peer-to-peer JSON- Enterprise Agents advertise

Protocol) partners RPC over HTTP/S OAuth2 capabilities via “cards”

ANP (Agent Network Cisco / Decentralized, DID- Self-sovereign | Semantic web discovery,

Protocol) AGNTCY secured identity open & scalable
architecture

ACP (Agent IBM / REST-first, OpenAPl + | Web-native Flexible endpoint discovery,

Communication Protocol) | BeeAl WebSockets security multimodal integration

6G needs to acknowledge this evolving landscape and align with the latest developments by
considering integration paths with these leading multi-agent communication protocols (i.e., MCP,
A2A, ANP, and ACP). By doing so, future 6G architecture will remain future-proof, interoperable, and

capable of supporting the next generation of agentic Al ecosystems.

Prototype Open-source solutions that exploit Multi-Agent Communication Protocols, and specifically
the MCP for telco solutions are already emerging. Such an example is the implementation of an MCP
server by ETSI SDG OSL?® offering exposure of the whole product, Service and resources catalogues as
well as product/Service order management via these MCP and-point and LLM integration offer a

powerful intent-based environment for product/service management.

4.3 The MLOPs concept

The lifecycle of traditional software pieces has become relatively straightforward (including processes
like deploy and integrate) with the aid of DevOps. However, when it comes to ML models unique
challenges emerge. ML models involve data collection, model training, validation, deployment, and
continuous monitoring and retraining. MLOps, refers to the combination of practices, tools, and
organizational processes that support the end-to-end development, deployment, and maintenance of
machine learning models in production environments. Its central goal is to ensure that ML systems
are reliable, scalable, governable, and continuously improvable, especially when operating in dynamic

or mission-critical settings.

The MLOps lifecycle begins with data engineering, where data is collected, cleaned, transformed, and
versioned so that models can be trained reproducibly. This is followed by experimentation and model
training, where practitioners track experiments, test different model configurations, and guarantee

replicability of results. After training, models go through rigorous validation that assesses their

28 https://labs.etsi.org/rep/osl/code/org.etsi.osl.mcp.server
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performance, robustness, interpretability, and resilience to distribution shifts. Deployment then
packages the validated models using containerization and orchestration technologies, allowing them
to operate efficiently and securely within production pipelines. Once deployed, MLOps focuses on
continuous monitoring to detect data drift, concept drift, anomalies, or performance degradation, and
it provides mechanisms for automated or controlled retraining and redeployment. Throughout this
process, governance functions - such as model versioning, metadata management, access control,
documentation, and audit trails - ensure that systems remain compliant, transparent, and aligned with

responsible Al principles.

MLOps has become particularly important in emerging 6G network environments, where Al is
envisioned as a native component of the architecture rather than a supplemental feature. Future
networks will operate across a distributed continuum that spans cloud data centres, edge nodes, and
end devices, and they will increasingly rely on learning-driven mechanisms to manage radio resources,
coordinate network slices, optimize energy consumption, detect faults, and adapt to highly dynamic
radio conditions. Because data distributions shift rapidly in large-scale telecom systems, MLOps
provides the essential monitoring and retraining mechanisms that keep Al models accurate and
dependable over time. Furthermore, the 6G vision prioritizes trust, explainability, security,
sustainability, and regulatory compliance. MLOps contributes directly to these priorities by
embedding auditing, responsible Al checks, explainability tools, and energy-efficient model lifecycle
management within operational pipelines. In a domain where network reliability is paramount and
failures can have large-scale impact, an operational backbone for managing the ML lifecycle becomes

indispensable.

Within this context, the SNS JU (Smart Networks and Services - Joint Undertaking) plays a central role
in shaping Europe’s 6G research agenda. Its recent work highlights Al/ML as a foundational capability
for next-generation networks, with numerous funded projects developing learning-based mechanisms
for the radio access network, resource optimization, security, energy management, and network
diagnostics. The SNS JU Technology Board’s recent white paper [8] identifies close to two hundred
ML-based mechanisms across its projects, demonstrating the breadth and depth of Al integration
within the 6G ecosystem. These initiatives frequently rely on heterogeneous and distributed data
sources that reflect different segments of the network, making privacy-preserving learning
approaches - such as FL or decentralized analytics - highly important. Additionally, because early-stage
6G technologies depend heavily on simulation environments, DT, and synthetic data to generate
training datasets, MLOps practices play a key role in ensuring data lineage, reproducibility, and the
smooth transfer of models from simulation to real-world testbeds. As SNS JU projects increasingly

move toward Al-native network functions that must update autonomously and continuously, the
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operational discipline provided by MLOps becomes the mechanism that ensures dependability,

accountability, and trustworthiness.

Several challenges can be identified which accompany the adoption of MLOps, based on the insights

of the SNS JU projects:

e One major challenge is the fragmentation of tools and practices across different projects,
which can result in inconsistent workflows, duplicated effort, and difficulty in integrating Al
components. A recommended approach is to develop shared architectural principles or a
common MLOps reference framework that projects can adopt, ensuring greater
interoperability.

e Another challenge relates to the management of model governance and transparency in
highly distributed systems. SNS JU projects would benefit from coordinated governance
policies that define model ownership, lifecycle responsibilities, audit procedures, and
explainability requirements, especially for models influencing critical network operations.

e A further issue is the complexity of deploying ML models across distributed infrastructure,
from cloud to edge. To overcome this, projects should adopt container-based, resource-aware
deployment strategies and consider standardized orchestration layers that support portability
and energy efficiency.

e Sustainability is also an emerging concern: as model training and retraining consume
significant energy, it is recommended that projects integrate sustainability metrics directly
into their MLOps pipelines, enabling models to be evaluated and optimized not only for
performance but also for environmental impact.

e Finally, capacity-building remains essential; MLOps requires collaboration between data
scientists, network engineers, and operations teams, and SNS JU could support cross-project

knowledge sharing, training initiatives, and common toolkits to reduce the skill gap.

By addressing these challenges through coordinated practices, SNS JU can establish a stable and
trustworthy foundation for the large-scale deployment of Al-native mechanisms in future European

6G networks.

From the MLOps’ implementation point of view, MLflow? is an open-source platform designed to
manage the end-to-end machine learning lifecycle, and it is often considered one of the foundational

tools for implementing MLOps because it directly supports several of MLOps’s key practices. MLflow

29 https://mlflow.org/
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provides a set of components that help teams track experiments, package models, and deploy them

in a consistent and reproducible way. Its core functionalities include:

e MLflow Tracking — A system for logging and comparing experiments, metrics, parameters, and
artifacts. This makes model development more transparent and reproducible.

o MLflow Projects — A packaging format that allows data scientists to bundle code,
dependencies, and configurations so that ML workloads can be executed consistently across
environments.

e MLflow Models — A standardized format for packaging trained models so they can be
deployed across different serving platforms (REST APls, cloud services, edge environments).

e MLflow Model Registry — A central repository to version, manage, and approve models
through stages such as staging, production, or archived. This enables controlled model

lifecycle management.
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5 Al AND ML FOR NETWORKS

Al/ML in networks has achieved remarkable advancement in B5G era and is gaining significant traction
with the advent of 6G. Every component and building block of a wireless system that we currently are
familiar with up to 5G, such as physical, network and application layers, will involve one or another
Al/ML techniques for optimization in term of communication, security, energy consumption,

performance and automations [18].

5.1 AlI/ML in mobile network procedures

Network Management. Al-driven network management is central to the vision of autonomous 6G
networks, enabling real-time control over network configuration, performance monitoring, fault
remediation as well as Radio Resource Management. Traditional rule-based management frameworks
are no longer sufficient to handle the scale, diversity, and agility demands of 6G environments. As a
result, AI/ML models have been adopted to realize self-configuration, self-optimization, and self-
healing functionalities. In addition, Zero Touch Management [19] and ML-Based Radio Resource
Management [20], are emerging as the most attractive research fields in the Al/ML enabled network

management domain.

Radio and access procedures. Altechniquesin RAN enable intelligent cell selection, handover control,
and RAN slicing. DRL is applied to optimize spectrum reuse and dynamic user association in
heterogeneous access environments. Al/ML models at the PHY target real-time channel estimation,
adaptive modulation, beamforming, and signal classification. DL architectures, including CNNs, DNNSs,
and autoencoders, enhance channel robustness and spectral efficiency. At the MAC layer, Al enables
predictive scheduling, adaptive retransmission, and efficient spectrum allocation. Multi-agent DRL
frameworks have shown potential in solving the problem of decentralized resource contention.
Overall, there are multiple surveys in the literature, highlighting the Al/ML potential in the PHY [21]-
[24] and MAC layers [25].

Transport network control. Software-Defined Networking (SDN) is a core architectural enabler for
programmable, agile, and intelligent 6G infrastructures. By decoupling the control and data planes,
SDN facilitates centralized management and real-time reconfiguration of network behaviour. With the
integration of Al/ML, SDN systems are transitioning toward autonomous network operation, capable
of predictive decision-making, context-aware routing, intent translation, and scalable orchestration.

ML techniques including supervised learning, RL, and DL are increasingly embedded within SDN
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controllers to optimize traffic engineering, intrusion detection, fault management, and slice

orchestration in 6G environments [26][27]].

Service orchestration. NFV enables the decoupling of network functions (NFs) from dedicated
hardware by running them as software instances on commodity servers. NFV plays a critical role in the
cloud-native evolution of 6G networks, where network services such as firewalls, load balancers, and
mobility anchors must be dynamically instantiated, scaled, and migrated across heterogeneous
infrastructures. Incorporating AI/ML techniques into NFV frameworks brings intelligence to
orchestration processes such as Virtual Network Function (VNF) placement, chaining, scaling, and fault
recovery. These learning-based enhancements improve resource utilization, reduce service

deployment latency, and support closed-loop automation under dynamic network demands [28][29].

Security and Trust enforcement. In the context of 6G networks, where the attack surface expands
with the proliferation of intelligent devices and edge components, Al plays a crucial role in enabling
proactive, real-time security mechanisms. Extended surveys in the literature explain in detail the Al-
enabled security and trust challenges for 6G networks [30][31]. According to these studies, Al/ML
models are used to detect a wide range of security threats including zero-day attacks, spoofing, DDoS
intrusions, and data exfiltration. Advanced hybrid DL approaches such as ensemble methods
combining convolutional networks with recurrent units or attention layers are used to capture both
spatial and temporal threat signatures. These models not only offer high detection accuracy but are

also capable of adapting to evolving threat landscapes through continual learning paradigms.

Digital Twin frameworks. DTs are high-fidelity virtual representations of real-world physical systems
that continuously mirror the state, behaviour, and context of their physical counterparts. In 6G
networks, DTs are envisioned as essential components for real-time monitoring, predictive
optimization, and closed-loop control across layers from radio access and core networks to end-user
applications and services. The integration of Al into DT frameworks transforms them from passive
replicas into cognitive entities capable of learning, reasoning, and adapting over time [32]. Al-
enhanced DTs enable proactive decision-making by simulating "what-if" scenarios, forecasting

network evolution, and autonomously controlling network behaviour under diverse constraints.

Network Slicing. Network slicing enables the creation of virtual, logically isolated networks over a
shared 6G infrastructure, each tailored to specific service requirements such as Ultra-Reliable Low
Latency Communications (URLLC), Enhanced Mobile Broadband (eMBB), or Massive Machine-Type
Communications (MMTC). Al/ML models are increasingly used to support real-time slice orchestration
and lifecycle management, addressing the challenges of resource elasticity, SLA enforcement, and

performance isolation. In the literature, the role of explainability and security in network slicing is
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highlighted as well [33][34]; specially towards enhancing transparency and reliability in scenarios

where real-time decision-making and high-stakes operational environments are needed.

Network Dimensioning and Planning. Al-enhanced network planning tools enable the efficient design
and deployment of 6G infrastructure, optimizing base station locations, frequency reuse, and backhaul
provisioning [35]. The benefits of Al/ML on network dimensioning and planning have been indicated
by many studies [36] already. Many factors call for use of Al/ML tools for the network dimensioning
and planning in the beyond 5G era, with major ones a) the concepts of multitenancy and network
slicing that require dynamic dimensioning and planning for the virtual sub-networks defined on top of
physical networks and resources; as well as b) the densification of the network infrastructure (since
higher frequency bands are adopted) and the convergence of multi-RAT communications (e.g., the

N3IWF of 5G core), that make the dimensioning and planning problem more complex [37].

E2E SLA Assurance. End-to-End (E2E) Service Level Agreement (SLA) assurance is a cornerstone of
intelligent and autonomous 6G networks, ensuring that diverse service requirements such as latency,
reliability, throughput, and energy efficiency are continuously met across heterogeneous domains
spanning RAN, transport, core, and edge. Traditional static SLA monitoring mechanisms lack the
adaptability required for dynamic, multi-slice, and multi-domain 6G environments. Al/ML-driven
assurance frameworks enable proactive and predictive SLA management by leveraging real-time

telemetry data and cross-layer analytics [38].

Service Elasticity. Service elasticity allows a network to dynamically adjust resource allocation and
service configurations in response to changing traffic demands, user mobility, and application
requirements. In 6G networks, elasticity is essential to maintain service continuity and efficiency under
highly variable and heterogeneous conditions. Al/ML-driven elasticity frameworks enable intelligent
scaling of network functions and slices across network domains. Predictive models analyze historical
and real-time data to forecast demand fluctuations and trigger proactive scaling actions, minimizing

both over-provisioning and resource starvation [39].

5.2 Al/ML integration in other types of networks

Al/ML in loT Networks. 0T devices form a dense, heterogeneous data layer that demands ultra-low
latency, energy efficiency, and decentralized intelligence. Al/ML models are increasingly deployed at
the edge using TinyML, a lightweight machine learning paradigm tailored for microcontrollers and low-
power loT endpoints. These models enable real-time inference for applications such as anomaly
detection, activity recognition, and environmental sensing. Representative Al/ML algorithms that can

help in developing energy efficient, secured and effective loT network operations and services can be
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found in [40]. As in other network types, Al-enabled security and explainability are also applicable to

loT networks [41].

Al/ML in Vehicular Networks. In Vehicular-to-Everything (V2X), Al supports URLLC, traffic flow
optimization, and cooperative perception. Federated and generative models are gaining traction. V2X
communication is a cornerstone use case for 6G, demanding URLLC, predictive mobility support, and
real-time collaborative decision-making. Al/ML enables this through several critical roles: predictive
beamforming, vehicular traffic flow optimization, and cooperative perception across vehicles and
infrastructure nodes. Recent research emphasizes the use of FL to train models on distributed
vehicular data without violating privacy, and GANs for synthetic data augmentation and scenario

simulation in edge-cloud environments [42][43].

Al/ML in UAV Networks. UAVs are integral to the 6G vision for providing on-demand, mobile, and
resilient communication services, especially in emergency recovery, rural coverage, and edge data
collection scenarios. Their dynamic mobility introduces challenges in trajectory planning, coverage
continuity, and interference control. Al and ML solutions for UAV networks are grouped into those
that enable new applications [44] and those that enhance the network operation, by improving
various design and functional aspects such as channel modelling, resource management, positioning,

and security [45].

Al/ML in Data Networks. As 6G pushes toward intelligent, hyper-connected ecosystems, data
networks including both the core and transport segments must evolve to support dynamic traffic
flows, high throughput, ultra-low latency, and pervasive analytics. Traditional traffic engineering and
data routing mechanisms are no longer sufficient to meet the demands of massive-scale applications
such as XR, DT, and industrial automation. The integration of Al/ML techniques into data networks
includes all the aspects of the data life cycle management [46]. The potential gains include real-time
analytics, predictive congestion control, intelligent routing, and self-optimizing packet delivery,

significantly enhancing efficiency and resilience.

Al/ML in Non-Terrestrial Networks (NTN). NTNs are poised to expand 6G coverage to global and
underserved regions. They introduce high dynamics in latency, mobility, and propagation,
necessitating Al/ML support for predictive and adaptive operations [47]. Unlike terrestrial networks
(with mostly fixed base stations), NTNs involve highly mobile nodes moving in three-dimensional
space, and thus, the network topology changes continuously due to orbital motion or flight paths. ML
models can learn and predict these dynamics, enabling adaptive routing, link scheduling, and beam
management in real time. In addition, since traditional optimization methods struggle with the

spatiotemporal complexity of NTNs; Al excels in learning from dynamic patterns.
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6 CONCLUSIONS & WAY FORWARD

Intensive efforts in the research community, standardisation bodies and open implementation
projects highlight the transformative potential of Al/ML in advancing smart networks and services,
particularly within the context of 6G networks. Al/ML already plays a critical role in driving innovation,
enhancing network performance, and addressing key challenges such as security, trust, and
sustainability. In this context, several Al/ML-related concepts have emerged, expanding the
terminology, with recent additions including agentic Al systems and the development of Al-native
networks and systems. In addition, the integration of Al/ML into network management, service
orchestration, and optimization is considered essential for achieving autonomous, intelligent, and
adaptive networks. Furthermore, there is a need for standardized frameworks and open
implementation practices to ensure reliable, scalable, and governable Al/ML operations. Overall,
Al/ML has become a crucial enabler of 6G connectivity, unlocking its full potential and paving the way

for the next generation of intelligent, connected networks.
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APPENDIX — Al/ML DICTIONARY

Al/ML related term

Al-Native systems

Al model

Al agent

Agentic Al

LLMs

Multi-agent Systems

Generative Al

Explainable Al

Supervised Learning

Unsupervised Learning

Reinforcement learning

Neural networks

Deep learning
Deep Reinforcement

learning

Federated learning

ML model training phase

ML model emulation phase

‘ Description

A system where the Al is an intrinsic part of it.

A program/algorithm that has been trained to recognize certain patterns
or make certain decisions without further human intervention.

A component designed to handle tasks and processes with a degree of
autonomy within a system or network

The type of artificial intelligence that is designed to exhibit autonomous
decision-making and behaviour, often with the capability to act
independently within certain defined constraints or goals.

Pretrained models in a vast amount of factual knowledge, usually from
publicly available data sources to enable agentic Al to understand,
generate, and respond to natural language requests.

A system where multiple autonomous agents interact and collaborate to
perform complex tasks.

The use of Al models to create content, including text, video, code and
images.

A set of processes and methods that allow human users to comprehend
and trust the results and output created by Al/ML systems

A category of ML that uses labelled datasets to train algorithms to predict
outcomes and recognize patterns.

A category of ML where unlabelled data is provided and patterns/insights
are discovered without any explicit guidance or instruction.

A category of ML that follows a trial-and-error learning process by
interacting with the environment.

Complex supervised learning methods that mimic the way biological
neurons work together to identify phenomena, weigh options and arrive
at conclusions.

A learning method which uses hundreds or thousands of layers of a Neural
Network to train its models.

An expansion of the RL paradigm where Deep Learning (practically deep
neural networks) are used to approximate functions.

A distributed learning approach where instead of transferring data to a
central point to train a model, models are trained locally where the data
resides and then the models are passed to a central federation unit.

The phase during which raw or pre-processed data is used to produce or
update an ML model.

The phase during which the performance of an ML entity is
assessed/validated in a controlled virtual environment.
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ML model deployment
phase
ML model inference phase

MLops

MLFLow

The Al/ML landscape for smart networks and services

The phase during which a validated ML model is loaded into an Al/ML
inference function that will consume it.

The phase during which the ML model is used to support real-time or
near-real-time decision making.

Machine Learning Operations, refers to the combination of practices,
tools, and organizational processes that support the lifecycle of ML
models.

MLflow is an open-source platform designed to manage the end-to-end
machine learning lifecycle.
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